Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees

加速 计算机科学 计算 并行计算 多处理 共享内存 图像(数学) 图像配准 算法 人工智能
作者
Torsten Rohlfing,Calvin R. Maurer
出处
期刊:IEEE Transactions on Information Technology in Biomedicine [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 16-25 被引量:334
标识
DOI:10.1109/titb.2003.808506
摘要

One major problem with nonrigid image registration techniques is their high computational cost. Because of this, these methods have found limited application to clinical situations where fast execution is required, e.g., intraoperative imaging. This paper presents a parallel implementation of a nonrigid image registration algorithm. It takes advantage of shared-memory multiprocessor computer architectures using multithreaded programming by partitioning of data and partitioning of tasks, depending on the computational subproblem. For three different biomedical applications (intraoperative brain deformation, contrast-enhanced MR mammography, intersubject brain registration), the scaling behavior of the algorithm is quantitatively analyzed. The method is demonstrated to perform the computation of intra-operative brain deformation in less than a minute using 64 CPUs on a 128-CPU shared-memory supercomputer (SGI Origin 3800). It is shown that its serial component is no more than 2% of the total computation time, allowing a speedup of at least a factor of 50. In most cases, the theoretical limit of the speedup is substantially higher (up to 132-fold in the application examples presented in this paper). The parallel implementation of our algorithm is, therefore, capable of solving nonrigid registration problems with short execution time requirements and may be considered an important step in the application of such techniques to clinically important problems such as the computation of brain deformation during cranial image-guided surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yory完成签到 ,获得积分10
1秒前
1秒前
远航完成签到 ,获得积分10
1秒前
1秒前
彭于晏应助Rrr采纳,获得10
1秒前
卓然发布了新的文献求助10
1秒前
精明的中蓝完成签到,获得积分10
2秒前
66应助小钻风采纳,获得10
2秒前
2秒前
领导范儿应助星星采纳,获得10
3秒前
汉堡包应助shotgod采纳,获得10
3秒前
如寄完成签到 ,获得积分10
3秒前
顾闭月发布了新的文献求助10
4秒前
研友_VZG7GZ应助石头采纳,获得10
4秒前
有益发布了新的文献求助10
5秒前
xibei完成签到 ,获得积分10
5秒前
6秒前
丘比特应助爱吃肉的猪采纳,获得10
6秒前
6秒前
6秒前
dyh6802发布了新的文献求助10
6秒前
7秒前
Wxx完成签到 ,获得积分10
7秒前
七栀完成签到,获得积分10
7秒前
科研通AI2S应助阿芙乐尔采纳,获得10
9秒前
一条贤与完成签到,获得积分20
9秒前
10秒前
10秒前
yl完成签到,获得积分10
10秒前
泊声完成签到,获得积分20
11秒前
su发布了新的文献求助10
11秒前
Island发布了新的文献求助10
11秒前
科研小民工应助一枪入魂采纳,获得30
11秒前
12秒前
12秒前
科研通AI2S应助gwh采纳,获得10
13秒前
13秒前
13秒前
13秒前
隐形曼青应助zhihan采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794