Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method

涂层 工艺工程 人工神经网络 沉积(地质) 材料科学 过程(计算) 计算机科学 人工智能 生物系统 纳米技术 工程类 古生物学 沉积物 生物 操作系统
作者
Ajit Behera,S C Mishra
出处
期刊:Open Journal of Composite Materials [Scientific Research Publishing, Inc.]
卷期号:02 (02): 54-60 被引量:14
标识
DOI:10.4236/ojcm.2012.22008
摘要

Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes.Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviously the most economical way to provide high performance to machinery and industrial equipments.The present work aims at developing and studying the industrial wastes (Flay-ash, Quartz and illmenite composite mixture) as the coating material, which is to be deposited on Mild Steel and Copper substrates.To study and evaluate Coating deposition efficiency, artificial neural network analysis (ANN) technique is used.By this quality control technique, it is sufficient to describe approximation complex of inter-relationships of operating parameters in atmospheric plasma spray process.ANN technique helps in saving time and resources for experimental trials.The aim of this work is to outline a procedure for selecting an appropriate input vectors in ANN coating efficiency models, based on statistical pre-processing of the experimental data set.This methodology can provide deep understanding of various co-relationships across multiple scales of length and time, which could be essential for improvement of product and process performance.The deposition efficiency of coatings has a strong dependence on input power level, particle size of the feed material, powder feed rate and torch to substrate distance.ANN experimental results indicate that the projection network has good generalization capability to optimize the deposition efficiency, when an appropriate size of training set and network is utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周完成签到,获得积分10
1秒前
遂安完成签到,获得积分10
2秒前
乐乐应助石文采纳,获得10
2秒前
研友_Zr2mxZ完成签到,获得积分10
3秒前
3秒前
aaacg发布了新的文献求助10
3秒前
4秒前
落后的梦秋完成签到,获得积分10
7秒前
星辰大海应助keikeizi采纳,获得10
8秒前
朱诗源完成签到 ,获得积分10
8秒前
creep完成签到,获得积分10
9秒前
look完成签到,获得积分10
10秒前
韭菜完成签到,获得积分20
10秒前
小太阳发光发热完成签到,获得积分10
11秒前
12秒前
srui完成签到,获得积分10
13秒前
dy完成签到,获得积分10
15秒前
EdinLiv发布了新的文献求助10
15秒前
嵇笑蓝发布了新的文献求助10
15秒前
lidd发布了新的文献求助30
16秒前
爆爆不是金克丝完成签到,获得积分10
17秒前
额123没名完成签到 ,获得积分10
17秒前
科目三应助贝肯妮采纳,获得10
18秒前
CipherSage应助pupupup采纳,获得30
19秒前
欣喜千易发布了新的文献求助10
20秒前
aaacg完成签到,获得积分10
20秒前
21秒前
wph完成签到,获得积分10
21秒前
好好好完成签到 ,获得积分10
21秒前
HS完成签到 ,获得积分10
22秒前
小赵完成签到,获得积分10
22秒前
欣慰冷荷完成签到,获得积分10
23秒前
24秒前
辛勤的香芦完成签到,获得积分10
25秒前
羊羊完成签到,获得积分10
26秒前
anjun完成签到,获得积分10
27秒前
石文发布了新的文献求助10
28秒前
马甲甲完成签到,获得积分10
28秒前
29秒前
超级行恶完成签到 ,获得积分10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185