Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method

涂层 工艺工程 人工神经网络 沉积(地质) 材料科学 过程(计算) 计算机科学 人工智能 生物系统 纳米技术 工程类 古生物学 沉积物 生物 操作系统
作者
Ajit Behera,S C Mishra
出处
期刊:Open Journal of Composite Materials [Scientific Research Publishing, Inc.]
卷期号:02 (02): 54-60 被引量:14
标识
DOI:10.4236/ojcm.2012.22008
摘要

Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes.Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviously the most economical way to provide high performance to machinery and industrial equipments.The present work aims at developing and studying the industrial wastes (Flay-ash, Quartz and illmenite composite mixture) as the coating material, which is to be deposited on Mild Steel and Copper substrates.To study and evaluate Coating deposition efficiency, artificial neural network analysis (ANN) technique is used.By this quality control technique, it is sufficient to describe approximation complex of inter-relationships of operating parameters in atmospheric plasma spray process.ANN technique helps in saving time and resources for experimental trials.The aim of this work is to outline a procedure for selecting an appropriate input vectors in ANN coating efficiency models, based on statistical pre-processing of the experimental data set.This methodology can provide deep understanding of various co-relationships across multiple scales of length and time, which could be essential for improvement of product and process performance.The deposition efficiency of coatings has a strong dependence on input power level, particle size of the feed material, powder feed rate and torch to substrate distance.ANN experimental results indicate that the projection network has good generalization capability to optimize the deposition efficiency, when an appropriate size of training set and network is utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨前知了完成签到,获得积分10
刚刚
1秒前
斯文败类应助abtx314采纳,获得10
1秒前
如初完成签到,获得积分10
2秒前
Lucas应助延续采纳,获得10
2秒前
研友_VZG7GZ应助樱桃小王子采纳,获得10
2秒前
萝卜发布了新的文献求助10
3秒前
刘文宇发布了新的文献求助10
3秒前
柯友卉完成签到 ,获得积分10
3秒前
ryen完成签到,获得积分10
4秒前
星辰大海应助八卦巧克力采纳,获得10
4秒前
sube完成签到,获得积分10
4秒前
5秒前
易达发布了新的文献求助10
5秒前
科研乞丐应助陈澜采纳,获得20
5秒前
6秒前
研友_VZG7GZ应助JaesXX采纳,获得10
7秒前
7秒前
8秒前
顾矜应助www采纳,获得10
9秒前
活力的映易完成签到,获得积分10
10秒前
11秒前
言无间发布了新的文献求助10
11秒前
JxJ完成签到,获得积分10
12秒前
12秒前
一枚小神经病完成签到,获得积分20
13秒前
小二郎应助Sheya采纳,获得10
15秒前
无辜的白秋完成签到,获得积分10
15秒前
我们完成签到 ,获得积分10
16秒前
大模型应助q792309106采纳,获得10
17秒前
爆米花应助Kekela1739采纳,获得10
18秒前
杨昕发布了新的文献求助30
18秒前
18秒前
安详的自中完成签到,获得积分10
18秒前
zhangyu应助勤恳立轩采纳,获得10
20秒前
21秒前
沙漠大雕完成签到,获得积分10
22秒前
22秒前
蒋50完成签到,获得积分10
23秒前
陈陈发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014