清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing

材料科学 紧迫的 硬化(计算) 位错 应变硬化指数 变形(气象学) 有限元法 复合材料 纹理(宇宙学) 冶金 结构工程 人工智能 计算机科学 工程类 图像(数学) 图层(电子)
作者
Seung‐Chul Baik,Yuri Estrin,Hyoung Seop Kim,Ralph Jörg Hellmig
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:351 (1-2): 86-97 被引量:217
标识
DOI:10.1016/s0921-5093(02)00847-x
摘要

In this study, the deformation behavior of aluminium during equal channel angular pressing (ECAP) was calculated on the basis of a dislocation density-based model. The behavior of the material under ECAP, including the dislocation density and cell size evolution as well as texture development, was simulated using the finite element method (FEM). The simulated stress, strain and cell size were compared with the experimental data, which were obtained by ECAP for several passes in a modified Route C regime. Good agreement between simulation results and experimental data, including strain distribution, dislocation density and cell size evolution, strain hardening and texture development was obtained. As concerns the general trends, the stress was found to increase rapidly in the first ECAP pass, the strain-hardening rate then dropping from the second pass on. Calculations showed a non-uniform strain distribution evolving in the course of ECAP. The simulated cell size is also in good agreement with the experiment, particularly with the observed rapid decrease of the cell size during the first pass slowing down from the second pass onwards. Larger cells were found to form in the upper and the lower parts of the workpiece where the strain is smaller than in the middle part. Due to the accumulation of strain throughout the workpiece and an overall trend to saturation of the cell size, a decrease of the difference in cell size with the number of passes was predicted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charih完成签到 ,获得积分10
3秒前
乐仔发布了新的文献求助10
5秒前
科目三应助ananan采纳,获得10
12秒前
酷波er应助xiiin采纳,获得10
13秒前
27秒前
28秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
32秒前
ananan发布了新的文献求助10
33秒前
xiiin发布了新的文献求助10
33秒前
41秒前
WTT应助科研通管家采纳,获得10
41秒前
zhongu应助科研通管家采纳,获得10
41秒前
小二郎应助科研通管家采纳,获得10
41秒前
搜集达人应助乐仔采纳,获得10
47秒前
英俊的铭应助xiiin采纳,获得10
52秒前
研友_VZG7GZ应助rotator采纳,获得10
58秒前
lilaccalla完成签到 ,获得积分10
59秒前
胖小羊完成签到 ,获得积分10
1分钟前
1分钟前
rotator发布了新的文献求助10
1分钟前
1分钟前
李思完成签到 ,获得积分10
1分钟前
kohu完成签到,获得积分10
1分钟前
科研通AI5应助张华采纳,获得10
1分钟前
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
xiiin发布了新的文献求助10
1分钟前
寒战完成签到 ,获得积分10
1分钟前
海皇星空完成签到 ,获得积分10
1分钟前
LJ_2完成签到 ,获得积分10
1分钟前
1分钟前
oaoalaa完成签到 ,获得积分10
1分钟前
瘦瘦凌丝完成签到 ,获得积分10
1分钟前
乐仔发布了新的文献求助10
1分钟前
manchang完成签到 ,获得积分10
2分钟前
想睡觉的小笼包完成签到 ,获得积分10
2分钟前
大水完成签到 ,获得积分10
2分钟前
huangzsdy完成签到,获得积分10
2分钟前
Akim应助小小采纳,获得20
2分钟前
酷波er应助HuiHui采纳,获得10
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477509
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110233
捐赠科研通 2760462
什么是DOI,文献DOI怎么找? 1514928
邀请新用户注册赠送积分活动 700486
科研通“疑难数据库(出版商)”最低求助积分说明 699617