代谢组学
乳腺癌
化学
代谢物
代谢组
代谢途径
色谱法
计算生物学
癌症
生物化学
新陈代谢
内科学
医学
生物
作者
Yanhua Chen,Ruiping Zhang,Yongmei Song,Jiuming He,Jianghao Sun,Jinfa Bai,Zhuoling An,Lijia Dong,Qimin Zhan,Zeper Abliz
出处
期刊:Analyst
[The Royal Society of Chemistry]
日期:2009-01-01
卷期号:134 (10): 2003-2003
被引量:189
摘要
A metabonomics strategy based on rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS), multivariate statistics and metabolic correlation networks has been implemented to find biologically significant metabolite biomarkers in breast cancer. RRLC-MS/MS analysis by electrospray ionization (ESI) in both positive and negative ion modes was employed to investigate human urine samples. The resulting data matrices were analyzed using multivariate analysis. Application of orthogonal projections to latent structures discriminate analysis (OPLS-DA) allowed us to extract several discriminated metabolites reflecting metabolic characteristics between healthy volunteers and breast cancer patients. Correlation network analysis between these metabolites has been further applied to select more reliable biomarkers. Finally, high resolution MS and MS/MS analyses were performed for the identification of the metabolites of interest. We identified 12 metabolites as potential biomarkers including amino acids, organic acids, and nucleosides. They revealed elevated tryptophan and nucleoside metabolism as well as protein degradation in breast cancer patients. These studies demonstrate the advantages of integrating metabolic correlation networks with metabonomics for finding significant potential biomarkers: this strategy not only helps identify potential biomarkers, it also further confirms these biomarkers and can even provide biochemical insights into changes in breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI