RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer

代谢组学 乳腺癌 化学 代谢物 代谢组 代谢途径 色谱法 计算生物学 癌症 生物化学 新陈代谢 内科学 医学 生物
作者
Yanhua Chen,Ruiping Zhang,Yongmei Song,Jiuming He,Jianghao Sun,Jinfa Bai,Zhuoling An,Lijia Dong,Qimin Zhan,Zeper Abliz
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:134 (10): 2003-2003 被引量:189
标识
DOI:10.1039/b907243h
摘要

A metabonomics strategy based on rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS), multivariate statistics and metabolic correlation networks has been implemented to find biologically significant metabolite biomarkers in breast cancer. RRLC-MS/MS analysis by electrospray ionization (ESI) in both positive and negative ion modes was employed to investigate human urine samples. The resulting data matrices were analyzed using multivariate analysis. Application of orthogonal projections to latent structures discriminate analysis (OPLS-DA) allowed us to extract several discriminated metabolites reflecting metabolic characteristics between healthy volunteers and breast cancer patients. Correlation network analysis between these metabolites has been further applied to select more reliable biomarkers. Finally, high resolution MS and MS/MS analyses were performed for the identification of the metabolites of interest. We identified 12 metabolites as potential biomarkers including amino acids, organic acids, and nucleosides. They revealed elevated tryptophan and nucleoside metabolism as well as protein degradation in breast cancer patients. These studies demonstrate the advantages of integrating metabolic correlation networks with metabonomics for finding significant potential biomarkers: this strategy not only helps identify potential biomarkers, it also further confirms these biomarkers and can even provide biochemical insights into changes in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clover04应助困困困困采纳,获得10
刚刚
lgb发布了新的文献求助10
刚刚
1秒前
乔谷雪发布了新的文献求助10
2秒前
大模型应助友好的尔容采纳,获得10
2秒前
3秒前
GG完成签到 ,获得积分10
3秒前
萧瑟处完成签到,获得积分10
3秒前
霍仁维思完成签到,获得积分10
5秒前
Yziii应助ccccc采纳,获得20
8秒前
9秒前
不想取名字完成签到,获得积分20
10秒前
不配.应助牛肉汉堡采纳,获得10
10秒前
10秒前
今晚打母驴给hms8965的求助进行了留言
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
雨安应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
13秒前
Esfuerzo完成签到,获得积分10
13秒前
Genmii完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
Richard发布了新的文献求助10
15秒前
16秒前
16秒前
ZYN发布了新的文献求助10
17秒前
酷波er应助xxx采纳,获得10
17秒前
xhh完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
ytl发布了新的文献求助10
19秒前
liu1212完成签到,获得积分10
19秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217938
求助须知:如何正确求助?哪些是违规求助? 2867189
关于积分的说明 8154985
捐赠科研通 2533990
什么是DOI,文献DOI怎么找? 1366725
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617836