RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer

代谢组学 乳腺癌 化学 代谢物 代谢组 代谢途径 色谱法 计算生物学 癌症 生物化学 新陈代谢 内科学 医学 生物
作者
Yanhua Chen,Ruiping Zhang,Yongmei Song,Jiuming He,Jianghao Sun,Jinfa Bai,Zhuoling An,Lijia Dong,Qimin Zhan,Zeper Abliz
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:134 (10): 2003-2003 被引量:189
标识
DOI:10.1039/b907243h
摘要

A metabonomics strategy based on rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS), multivariate statistics and metabolic correlation networks has been implemented to find biologically significant metabolite biomarkers in breast cancer. RRLC-MS/MS analysis by electrospray ionization (ESI) in both positive and negative ion modes was employed to investigate human urine samples. The resulting data matrices were analyzed using multivariate analysis. Application of orthogonal projections to latent structures discriminate analysis (OPLS-DA) allowed us to extract several discriminated metabolites reflecting metabolic characteristics between healthy volunteers and breast cancer patients. Correlation network analysis between these metabolites has been further applied to select more reliable biomarkers. Finally, high resolution MS and MS/MS analyses were performed for the identification of the metabolites of interest. We identified 12 metabolites as potential biomarkers including amino acids, organic acids, and nucleosides. They revealed elevated tryptophan and nucleoside metabolism as well as protein degradation in breast cancer patients. These studies demonstrate the advantages of integrating metabolic correlation networks with metabonomics for finding significant potential biomarkers: this strategy not only helps identify potential biomarkers, it also further confirms these biomarkers and can even provide biochemical insights into changes in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qi完成签到,获得积分10
刚刚
笑点低代萱完成签到,获得积分10
刚刚
1秒前
彼岸完成签到,获得积分10
1秒前
1秒前
baolong完成签到,获得积分10
1秒前
2秒前
2秒前
bkagyin应助seven采纳,获得10
2秒前
CaoJing完成签到 ,获得积分10
2秒前
夏安发布了新的文献求助10
3秒前
3秒前
wanci应助酷酷妙梦采纳,获得10
3秒前
3秒前
Oh发布了新的文献求助10
4秒前
FancyShi发布了新的文献求助10
4秒前
4秒前
蜡笔小新完成签到,获得积分10
4秒前
4秒前
cab_rose发布了新的文献求助10
5秒前
5秒前
苦尽甘来遇见你完成签到,获得积分10
6秒前
聪慧的凝海完成签到 ,获得积分10
6秒前
dong应助小杨采纳,获得10
6秒前
D33sama完成签到,获得积分10
6秒前
勤恳的夏之完成签到,获得积分10
6秒前
7秒前
ccq发布了新的文献求助10
7秒前
wulin完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
8秒前
给我个二硫碘化钾完成签到,获得积分10
8秒前
典雅的土豆完成签到,获得积分10
8秒前
科研通AI2S应助mmyhn采纳,获得10
9秒前
江野完成签到 ,获得积分10
9秒前
9秒前
9秒前
哈先森完成签到,获得积分10
10秒前
Wiesen完成签到,获得积分10
11秒前
FancyShi完成签到,获得积分10
11秒前
华仔应助孤独绿柏采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267