RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer

代谢组学 乳腺癌 化学 代谢物 代谢组 代谢途径 色谱法 计算生物学 癌症 生物化学 新陈代谢 内科学 医学 生物
作者
Yanhua Chen,Ruiping Zhang,Yongmei Song,Jiuming He,Jianghao Sun,Jinfa Bai,Zhuoling An,Lijia Dong,Qimin Zhan,Zeper Abliz
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:134 (10): 2003-2003 被引量:209
标识
DOI:10.1039/b907243h
摘要

A metabonomics strategy based on rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS), multivariate statistics and metabolic correlation networks has been implemented to find biologically significant metabolite biomarkers in breast cancer. RRLC-MS/MS analysis by electrospray ionization (ESI) in both positive and negative ion modes was employed to investigate human urine samples. The resulting data matrices were analyzed using multivariate analysis. Application of orthogonal projections to latent structures discriminate analysis (OPLS-DA) allowed us to extract several discriminated metabolites reflecting metabolic characteristics between healthy volunteers and breast cancer patients. Correlation network analysis between these metabolites has been further applied to select more reliable biomarkers. Finally, high resolution MS and MS/MS analyses were performed for the identification of the metabolites of interest. We identified 12 metabolites as potential biomarkers including amino acids, organic acids, and nucleosides. They revealed elevated tryptophan and nucleoside metabolism as well as protein degradation in breast cancer patients. These studies demonstrate the advantages of integrating metabolic correlation networks with metabonomics for finding significant potential biomarkers: this strategy not only helps identify potential biomarkers, it also further confirms these biomarkers and can even provide biochemical insights into changes in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ALL发布了新的文献求助10
1秒前
大模型应助青筠采纳,获得10
1秒前
durian发布了新的文献求助10
1秒前
2秒前
冷酷向薇发布了新的文献求助10
3秒前
丫丫完成签到 ,获得积分20
3秒前
3秒前
扶摇完成签到 ,获得积分10
3秒前
闵卷完成签到,获得积分10
3秒前
且徐行完成签到,获得积分10
4秒前
怡然太阳发布了新的文献求助10
4秒前
HC发布了新的文献求助30
4秒前
JACKPAN给JACKPAN的求助进行了留言
5秒前
米米发布了新的文献求助10
5秒前
精明凡雁发布了新的文献求助10
5秒前
852应助goofs采纳,获得10
5秒前
shuai_guo完成签到,获得积分10
6秒前
mochi完成签到,获得积分10
7秒前
7秒前
7秒前
善学以致用应助猪猪hero采纳,获得10
7秒前
Jay发布了新的文献求助50
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
P_Chem发布了新的文献求助150
9秒前
10秒前
11秒前
李健的粉丝团团长应助ACE采纳,获得10
11秒前
共享精神应助HC采纳,获得10
12秒前
讨厌的十九岁完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
水煮牛肉火锅完成签到,获得积分10
14秒前
彭于晏应助愿景采纳,获得10
14秒前
15秒前
汉堡包应助ACE采纳,获得10
15秒前
刻苦乌冬面完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089228
求助须知:如何正确求助?哪些是违规求助? 4304013
关于积分的说明 13413247
捐赠科研通 4129680
什么是DOI,文献DOI怎么找? 2261670
邀请新用户注册赠送积分活动 1265742
关于科研通互助平台的介绍 1200344