Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

材料科学 透射率 薄板电阻 纳米线 光电子学 氧化铟锡 电极 纳米技术 弯曲半径 柔性电子器件 涂层 制作 图层(电子) 复合材料 薄膜 弯曲 物理化学 化学 病理 替代医学 医学
作者
Liangbing Hu,Han Sun Kim,Jung‐Yong Lee,Peter Peumans,Yi Cui
出处
期刊:ACS Nano [American Chemical Society]
卷期号:4 (5): 2955-2963 被引量:1973
标识
DOI:10.1021/nn1005232
摘要

We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wxd0211发布了新的文献求助10
刚刚
章鱼完成签到,获得积分20
刚刚
刚刚
任医生完成签到,获得积分10
刚刚
1秒前
wyh完成签到,获得积分10
1秒前
lalala完成签到,获得积分10
2秒前
FCH2023完成签到,获得积分10
2秒前
66应助cuihf06采纳,获得10
2秒前
半生完成签到 ,获得积分20
3秒前
锦鲤云间月完成签到,获得积分10
3秒前
3秒前
3秒前
南宫士晋完成签到 ,获得积分10
3秒前
犹豫勇完成签到,获得积分10
4秒前
侦察兵发布了新的文献求助10
4秒前
英姑应助DK采纳,获得10
5秒前
快乐小白菜完成签到,获得积分10
5秒前
joy完成签到,获得积分10
5秒前
5秒前
5秒前
孟春纪事完成签到,获得积分10
6秒前
清爽忆山完成签到,获得积分10
6秒前
小马甲应助轻松的怜容采纳,获得10
6秒前
Grayball应助噢噢采纳,获得10
6秒前
言辞完成签到,获得积分10
6秒前
小柠檬完成签到,获得积分20
6秒前
6秒前
土豆丝完成签到 ,获得积分10
7秒前
念念完成签到,获得积分10
7秒前
乐乐应助starry采纳,获得10
7秒前
温暖冰珍完成签到 ,获得积分10
7秒前
淳之风完成签到,获得积分20
8秒前
CarterXD应助hao采纳,获得30
8秒前
科研rain完成签到 ,获得积分10
8秒前
8秒前
清爽忆山发布了新的文献求助10
9秒前
睡觉晒太阳完成签到,获得积分10
9秒前
andy完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672