Waveguide-excited fluorescence microarray

波导管 信号(编程语言) 生物传感器 激发 光学 荧光 材料科学 探测器 光电子学 噪音(视频) 激发态 物理 计算机科学 纳米技术 人工智能 图像(数学) 核物理学 程序设计语言 量子力学
作者
Gabriel Sagarzazu,Mélanie Bedu,Lucio Martinelli,Khoi-Nguyen Ha,Nicolas Pelletier,V. I. Safarov,C. Weisbuch,Thierry Gacoin,Henri Benisty
出处
期刊:Proceedings of SPIE
标识
DOI:10.1117/12.781297
摘要

Signal-to-noise ratio is a crucial issue in microarray fluorescence read-out. Several strategies are proposed for its improvement. First, light collection in conventional microarrays scanners is quite limited. It was recently shown that almost full collection can be achieved in an integrated lens-free biosensor, with labelled species hybridizing practically on the surface of a sensitive silicon detector [L. Martinelli et al. Appl. Phys. Lett. 91, 083901 (2007)]. However, even with such an improvement, the ultimate goal of real-time measurements during hybridization is challenging: the detector is dazzled by the large fluorescence of labelled species in the solution. In the present paper we show that this unwanted signal can effectively be reduced if the excitation light is confined in a waveguide. Moreover, the concentration of excitation light in a waveguide results in a huge signal gain. In our experiment we realized a structure consisting of a high index sol-gel waveguide deposited on a low-index substrate. The fluorescent molecules deposited on the surface of the waveguide were excited by the evanescent part of a wave travelling in the guide. The comparison with free-space excitation schemes confirms a huge gain (by several orders of magnitude) in favour of waveguide-based excitation. An optical guide deposited onto an integrated biosensor thus combines both advantages of ideal light collection and enhanced surface localized excitation without compromising the imaging properties. Modelling predicts a negligible penalty from spatial cross-talk in practical applications. We believe that such a system would bring microarrays to hitherto unattained sensitivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1097完成签到 ,获得积分10
1秒前
缚大哥发布了新的文献求助10
2秒前
Rollei驳回了Hello应助
2秒前
tsntn完成签到,获得积分10
2秒前
wenbo完成签到,获得积分0
2秒前
3秒前
勤奋弋完成签到,获得积分10
6秒前
无名欧文完成签到,获得积分10
7秒前
9秒前
虚心海燕发布了新的文献求助10
9秒前
黄啊涛关注了科研通微信公众号
9秒前
9秒前
JamesPei应助Rainbow采纳,获得10
10秒前
一只科研狗完成签到,获得积分10
10秒前
pp0118完成签到 ,获得积分10
10秒前
余呀余完成签到 ,获得积分10
11秒前
12秒前
善良易文关注了科研通微信公众号
12秒前
12秒前
瑶一瑶发布了新的文献求助10
13秒前
yhy完成签到,获得积分10
13秒前
纯真雁菱完成签到,获得积分10
13秒前
sun发布了新的文献求助10
13秒前
w.h完成签到,获得积分10
14秒前
14秒前
Schmoo发布了新的文献求助10
14秒前
赘婿应助Zxc采纳,获得10
14秒前
明理雨筠完成签到,获得积分10
15秒前
Ava应助Chen采纳,获得10
16秒前
16秒前
16秒前
Xing发布了新的文献求助10
16秒前
w.h发布了新的文献求助10
17秒前
搜集达人应助狼来了aas采纳,获得10
18秒前
19秒前
点点发布了新的文献求助10
19秒前
21秒前
21秒前
blingbling完成签到,获得积分10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849