Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms

材料科学 抗弯强度 毛竹 竹子 复合材料 弯曲 微观结构 结构工程 工程类
作者
Meisam K. Habibi,Arash Samaei,Behnam Gheshlaghi,Jian Lü,Yang Lü
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:16: 178-186 被引量:186
标识
DOI:10.1016/j.actbio.2015.01.038
摘要

As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during “elastic bending” and “fracture failure” stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension–compression asymmetry, for further understanding of the microstructure evolution of bamboo’s outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助iuv采纳,获得10
刚刚
乙酸乙酯会挥发完成签到,获得积分10
1秒前
碧蓝初丹发布了新的文献求助30
2秒前
jackycas完成签到,获得积分10
2秒前
研友_LjDyNZ发布了新的文献求助10
3秒前
盐盐完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
hh发布了新的文献求助10
7秒前
more应助jack采纳,获得30
8秒前
hehehe完成签到,获得积分10
8秒前
iuv完成签到,获得积分10
9秒前
10秒前
10秒前
个性的紫菜应助再见梧桐采纳,获得10
11秒前
iuv发布了新的文献求助10
11秒前
小不溜完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助turbo采纳,获得10
14秒前
14秒前
16秒前
没风的季节完成签到,获得积分10
18秒前
18秒前
超级灰狼完成签到 ,获得积分10
20秒前
阿琳发布了新的文献求助10
20秒前
WHY驳回了华仔应助
20秒前
DY发布了新的文献求助10
21秒前
Umwandlung完成签到,获得积分10
22秒前
22秒前
清秀成威应助煮饭吃Zz采纳,获得10
23秒前
25秒前
26秒前
akamanuo完成签到,获得积分10
26秒前
27秒前
Yet.完成签到,获得积分10
27秒前
CodeCraft应助jy采纳,获得10
28秒前
华仔应助hh采纳,获得10
28秒前
pcr163应助wangfeng007采纳,获得200
30秒前
samosa发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012