Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms

材料科学 抗弯强度 毛竹 竹子 复合材料 弯曲 微观结构 变形(气象学) 结构工程 工程类
作者
Meisam K. Habibi,Arash Samaei,Behnam Gheshlaghi,Jian Lü,Yang Lü
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:16: 178-186 被引量:223
标识
DOI:10.1016/j.actbio.2015.01.038
摘要

As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during “elastic bending” and “fracture failure” stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension–compression asymmetry, for further understanding of the microstructure evolution of bamboo’s outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slay发布了新的文献求助10
刚刚
科研通AI6应助阿绫采纳,获得10
1秒前
2秒前
2秒前
3秒前
小小应助丘奇采纳,获得10
3秒前
3秒前
3秒前
小蜗牛完成签到 ,获得积分10
4秒前
4秒前
大豪子完成签到,获得积分10
5秒前
wbgwudi给wbgwudi的求助进行了留言
5秒前
海棠依旧完成签到,获得积分10
5秒前
24完成签到,获得积分10
5秒前
6秒前
对苏完成签到,获得积分10
6秒前
小何完成签到,获得积分10
6秒前
个性的荆发布了新的文献求助10
6秒前
刻苦大叔发布了新的文献求助10
8秒前
orixero应助red采纳,获得10
8秒前
9秒前
olivia发布了新的文献求助10
9秒前
Akim应助JJ采纳,获得10
9秒前
11秒前
11秒前
充电宝应助pjson15376449841采纳,获得10
11秒前
东北信风发布了新的文献求助100
12秒前
SciGPT应助fenglin4620采纳,获得10
13秒前
banruo发布了新的文献求助100
13秒前
13秒前
轨迹应助茗牌棉花采纳,获得20
14秒前
爱库珀应助茗牌棉花采纳,获得10
14秒前
16秒前
asd完成签到,获得积分10
16秒前
Hello应助机智的芷天采纳,获得10
17秒前
17秒前
游唐完成签到 ,获得积分10
18秒前
不胜寒完成签到,获得积分10
18秒前
18秒前
慕青应助黄家康采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901