Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms

材料科学 抗弯强度 毛竹 竹子 复合材料 弯曲 微观结构 变形(气象学) 结构工程 工程类
作者
Meisam K. Habibi,Arash Samaei,Behnam Gheshlaghi,Jian Lü,Yang Lü
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:16: 178-186 被引量:223
标识
DOI:10.1016/j.actbio.2015.01.038
摘要

As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during “elastic bending” and “fracture failure” stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension–compression asymmetry, for further understanding of the microstructure evolution of bamboo’s outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
传奇3应助郭濹涵采纳,获得10
2秒前
2秒前
文静人达发布了新的文献求助10
2秒前
零度结冰水完成签到,获得积分10
2秒前
anan应助tzrtwh采纳,获得10
3秒前
阿希莉亚发布了新的文献求助20
4秒前
MR_芝欧完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助浅沐采纳,获得30
5秒前
6秒前
小马甲应助鸭梨采纳,获得30
6秒前
7秒前
科研通AI6应助DUDU采纳,获得10
7秒前
orixero应助小砾狗狗采纳,获得10
7秒前
8秒前
8秒前
完美世界应助陶醉的雁枫采纳,获得10
9秒前
10秒前
科研通AI6应助阿希莉亚采纳,获得10
13秒前
14秒前
16秒前
桐桐应助XY12138采纳,获得10
16秒前
yesmider完成签到,获得积分10
17秒前
lruri完成签到,获得积分10
17秒前
19秒前
归尘应助乐乐采纳,获得10
20秒前
20秒前
林木完成签到 ,获得积分10
22秒前
赘婿应助菠萝采纳,获得10
22秒前
23秒前
向日葵发布了新的文献求助10
24秒前
迷你的书包完成签到,获得积分20
24秒前
顾矜应助细腻烙采纳,获得10
24秒前
25秒前
弘卿完成签到,获得积分10
25秒前
李爱国应助yhyhyh采纳,获得10
25秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
Moke驳回了烟花应助
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480585
求助须知:如何正确求助?哪些是违规求助? 4581808
关于积分的说明 14382086
捐赠科研通 4510374
什么是DOI,文献DOI怎么找? 2471758
邀请新用户注册赠送积分活动 1458207
关于科研通互助平台的介绍 1431859