已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Change detection in urban scenes by fusion of SAR and hyperspectral data

高光谱成像 计算机科学 遥感 传感器融合 反向散射(电子邮件) 合成孔径雷达 人工智能 图像分辨率 计算机视觉 地质学 电信 无线
作者
Dirk Borghys,Michal Shimoni,Christiaan Perneel
出处
期刊:Proceedings of SPIE 被引量:11
标识
DOI:10.1117/12.738767
摘要

Urban areas are rapidly changing all over the world and therefore provoke the necessity to update urban maps frequently. Remote sensing has been used for many years to monitor these changes. The urban scene is characterized by a very high complexity, containing objects formed from different types of man-made materials as well as natural vegetation. Hyperspectral sensors provide the capability to map the surface materials present in the scene using their spectra and therefore to identify the main object classes in the scene in a relatively easy manner. However ambiguities persist where different types of objects are constructed of the same material. This is for instance the case for roads and roof covers. Although higher-level image processing (e.g. spatial reasoning) might be able to relief some of these constraints, this task is far from straight forward. In the current paper the authors fused information gathered using a hyperspectral sensor with that of high-resolution polarimetric SAR data. SAR data give information about the type of scattering backscatter from an object in the scene, its geometry and its dielectric properties. Therefore, the information obtained using the SAR processing is complementary to that obtained using hyperspectral data. This research was applied on a dataset consisting of hyperspectral data from the HyMAP sensor (126 channels in VIS-SWIR) and E-SAR data which consists of fullpolarimetric L-band and dual-polarisation (HH and VV) X-band data. Two supervised classifications are used; 'Logistic Regression' (LR) which applied to the SAR and the PolSAR data and a 'Matched Filter' which is applied to the hyperspectral data. The results of the classification are fused in order to improve the mapping of the main classes in the scene and were compared to a ground truth map that was constructed by combining a digital topographic map and a vectorized cadastral map of the research area. An adequate change detection of man-made objects in urban scenes was obtained by the fusion of features derived from SAR, PolSAR and hyperspectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
我是老大应助按摩头了采纳,获得10
刚刚
大乐发布了新的文献求助10
1秒前
随机科研完成签到,获得积分10
1秒前
Accepted发布了新的文献求助10
2秒前
3秒前
KristenStewart完成签到,获得积分10
4秒前
不安枕头完成签到 ,获得积分10
5秒前
6秒前
7秒前
cy发布了新的文献求助10
7秒前
李昆朋完成签到,获得积分10
7秒前
柏林寒冬应助Accepted采纳,获得10
11秒前
小武同学完成签到 ,获得积分10
12秒前
zzzhujp发布了新的文献求助10
12秒前
ddd发布了新的文献求助10
13秒前
嘁嘁完成签到 ,获得积分10
17秒前
穆小菜发布了新的文献求助10
18秒前
科研通AI6应助丢丢银采纳,获得10
18秒前
zzzhujp完成签到,获得积分10
19秒前
欣欣子完成签到 ,获得积分10
20秒前
20秒前
20秒前
HK完成签到 ,获得积分10
21秒前
YJL完成签到 ,获得积分10
21秒前
21秒前
22秒前
Accepted完成签到,获得积分10
23秒前
24秒前
风趣的芝麻完成签到 ,获得积分10
25秒前
25秒前
慕课魔芋发布了新的文献求助10
26秒前
明理宛秋完成签到 ,获得积分10
26秒前
kqhys完成签到,获得积分10
27秒前
shentaii完成签到,获得积分10
27秒前
星辰大海应助穆小菜采纳,获得10
28秒前
Ashore发布了新的文献求助10
29秒前
30秒前
jiaojiao完成签到 ,获得积分10
34秒前
穆小菜完成签到,获得积分10
34秒前
上官若男应助中将采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497938
求助须知:如何正确求助?哪些是违规求助? 4595334
关于积分的说明 14448871
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481306
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438169