Change detection in urban scenes by fusion of SAR and hyperspectral data

高光谱成像 计算机科学 遥感 传感器融合 反向散射(电子邮件) 合成孔径雷达 人工智能 图像分辨率 计算机视觉 地质学 电信 无线
作者
Dirk Borghys,Michal Shimoni,Christiaan Perneel
出处
期刊:Proceedings of SPIE 被引量:11
标识
DOI:10.1117/12.738767
摘要

Urban areas are rapidly changing all over the world and therefore provoke the necessity to update urban maps frequently. Remote sensing has been used for many years to monitor these changes. The urban scene is characterized by a very high complexity, containing objects formed from different types of man-made materials as well as natural vegetation. Hyperspectral sensors provide the capability to map the surface materials present in the scene using their spectra and therefore to identify the main object classes in the scene in a relatively easy manner. However ambiguities persist where different types of objects are constructed of the same material. This is for instance the case for roads and roof covers. Although higher-level image processing (e.g. spatial reasoning) might be able to relief some of these constraints, this task is far from straight forward. In the current paper the authors fused information gathered using a hyperspectral sensor with that of high-resolution polarimetric SAR data. SAR data give information about the type of scattering backscatter from an object in the scene, its geometry and its dielectric properties. Therefore, the information obtained using the SAR processing is complementary to that obtained using hyperspectral data. This research was applied on a dataset consisting of hyperspectral data from the HyMAP sensor (126 channels in VIS-SWIR) and E-SAR data which consists of fullpolarimetric L-band and dual-polarisation (HH and VV) X-band data. Two supervised classifications are used; 'Logistic Regression' (LR) which applied to the SAR and the PolSAR data and a 'Matched Filter' which is applied to the hyperspectral data. The results of the classification are fused in order to improve the mapping of the main classes in the scene and were compared to a ground truth map that was constructed by combining a digital topographic map and a vectorized cadastral map of the research area. An adequate change detection of man-made objects in urban scenes was obtained by the fusion of features derived from SAR, PolSAR and hyperspectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿华发布了新的文献求助10
3秒前
活力的问安完成签到 ,获得积分10
5秒前
nini发布了新的文献求助10
5秒前
6秒前
空蝉完成签到,获得积分10
7秒前
8秒前
汉堡包应助叙余采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
完美世界应助herogyus采纳,获得20
10秒前
彳亍1117应助科研通管家采纳,获得20
10秒前
彳亍1117应助科研通管家采纳,获得20
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
彳亍1117应助科研通管家采纳,获得20
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
吃的饱饱呀完成签到,获得积分10
12秒前
ho发布了新的文献求助30
14秒前
含蓄觅山完成签到 ,获得积分10
14秒前
义气秋灵发布了新的文献求助10
14秒前
17秒前
可爱的函函应助Y神采纳,获得10
17秒前
研友_zndKVL发布了新的文献求助10
19秒前
雾海完成签到,获得积分10
19秒前
庄默羽完成签到,获得积分10
21秒前
一坛完成签到 ,获得积分10
21秒前
lslslslsllss发布了新的文献求助20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373831
求助须知:如何正确求助?哪些是违规求助? 4499875
关于积分的说明 14007415
捐赠科研通 4406786
什么是DOI,文献DOI怎么找? 2420717
邀请新用户注册赠送积分活动 1413451
关于科研通互助平台的介绍 1390059