Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy
In this paper, a core–shell nanocomposite of clusters of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) (SPION clusters@PDA) is fabricated as a magnetic field-directed theranostic agent that combines the capabilities of highly sensitive magnetic resonance imaging (MRI) and photothermal cancer therapy. The highly concentrated SPION cluster core is suitable for sensitive MRI due to its superparamagnetic properties, and the poly(dopamine) coating layer can induce cancer cell death under near-infrared (NIR) laser irradiation because of the photothermal conversion ability of PDA. MRI scanning reveals that the nanocomposite has relatively high r2 and r2(*) relaxivities, and the r2(*) values are nearly threefold higher than the r2 values because of the clustering of the SPIONs in the nanocomposite core. Due to the rapid response to magnetic field gradients, enhanced cellular uptake of our nanocomposite mediated by an external magnetic field can be achieved, thus producing significantly enhanced local photothermal killing efficiency against cancer cells under NIR irritation.