Robust NIRS models for non-destructive prediction of mango internal quality

可滴定酸 肉体 偏最小二乘回归 干物质 栽培 数学 色调 采后 园艺 糖度 成熟 食品科学 植物 化学 统计 生物 计算机科学 人工智能
作者
Thibault Nordey,Jacques Joas,Fabrice Davrieux,Marc Chillet,Mathieu Léchaudel
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:216: 51-57 被引量:77
标识
DOI:10.1016/j.scienta.2016.12.023
摘要

Near infrared spectroscopy (NIRS) is increasingly being used with success in fruit supply chains for the non-destructive assessment of internal fruit quality. However, the prediction performance of NIRS was reported to be sensitive to changes in the pre- and post-harvest factors involved in fruit quality variations. This study attempted to establish robust NIRS models to predict mango internal quality, regardless of the conditions encountered by fruits on the tree and after harvest. A database involving mangoes (n = 250) from different production years and orchards and which were harvested at different maturity stages and stored at different temperatures for various periods was used to characterize mango quality using NIRS. The large variations measured in mango total soluble solid (TSS) content, dry matter, flesh color and acidity ensured that the dataset considered in this study covered differences in quality levels that can be encountered for the mango cultivar studied. Variable selection procedures and pre-processing techniques were used to improve the performance of the Partial Least Squares Regression (PLSR) models that accurately predicted the mango quality traits studied, regardless of the origins and storage conditions. The root mean square errors in prediction (RMSEP) were 0.6°Brix, 1.4%, 5.9 meq 100 g FM−1 and 3.16°Brix for the TSS content, dry matter content, titratable acidity and the hue angle of flesh color, respectively. The results presented in this study confirmed that robust NIRS models can be developed to predict mango quality by considering the pre- and post-harvest factors involved in fruit quality. Further studies should assess the use of NIR spectra on fruits to address internal quality variation issues, as well as the ability of NIRS to predict fruit shelf life and eating quality at harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
852应助grammays采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
开朗的觅柔完成签到,获得积分10
4秒前
Hello应助pokexuejiao采纳,获得10
5秒前
周舟完成签到,获得积分10
6秒前
mayucong完成签到,获得积分10
7秒前
9秒前
领导范儿应助Eunhyo采纳,获得10
12秒前
13秒前
Lanx完成签到,获得积分10
14秒前
沙耶酱完成签到,获得积分10
15秒前
24秒前
BH发布了新的文献求助10
27秒前
贝肯尼完成签到,获得积分10
28秒前
深情安青应助月亮采纳,获得10
29秒前
Tink完成签到,获得积分10
32秒前
迅速的平蝶完成签到,获得积分10
34秒前
37秒前
万能图书馆应助dodo2hu采纳,获得10
38秒前
38秒前
研友_VZG7GZ应助MOF采纳,获得10
39秒前
wangshui发布了新的文献求助30
41秒前
言余完成签到,获得积分10
43秒前
haveatry发布了新的文献求助10
44秒前
幽默的惮发布了新的文献求助30
50秒前
英俊的铭应助江小白采纳,获得10
57秒前
hawaii66完成签到,获得积分10
57秒前
赘婿应助nml采纳,获得10
1分钟前
1分钟前
小二郎应助LL采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352562
求助须知:如何正确求助?哪些是违规求助? 2977604
关于积分的说明 8680602
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709