Molecular Origins of the Zeta Potential

Zeta电位 化学 纳米技术 材料科学 纳米颗粒
作者
Milan Předota,Michael L. Machesky,David J. Wesolowski
出处
期刊:Langmuir [American Chemical Society]
卷期号:32 (40): 10189-10198 被引量:101
标识
DOI:10.1021/acs.langmuir.6b02493
摘要

The zeta potential (ZP) is an oft-reported measure of the macroscopic charge state of solid surfaces and colloidal particles in contact with solvents. However, the origin of this readily measurable parameter has remained divorced from the molecular-level processes governing the underlying electrokinetic phenomena, which limits its usefulness. Here, we connect the macroscopic measure to the microscopic realm through nonequilibrium molecular dynamics simulations of electroosmotic flow between parallel slabs of the hydroxylated (110) rutile (TiO2) surface. These simulations provided streaming mobilities, which were converted to ZP via the commonly used Helmholtz-Smoluchowski equation. A range of rutile surface charge densities (0.1 to -0.4 C/m2), corresponding to pH values between about 2.8 and 9.4, in RbCl, NaCl, and SrCl2 aqueous solutions, were modeled and compared to experimental ZPs for TiO2 particle suspensions. Simulated ZPs qualitatively agree with experiment and show that "anomalous" ZP values and inequalities between the point of zero charge derived from electrokinetic versus pH titration measurements both arise from differing co- and counterion sorption affinities. We show that at the molecular level the ZP arises from the delicate interplay of spatially varying dynamics, structure, and electrostatics in a narrow interfacial region within about 15 Å of the surface, even in dilute salt solutions. This contrasts fundamentally with continuum descriptions of such interfaces, which predict the ZP response region to be inversely related to ionic strength. In reality the properties of this interfacial region are dominated by relatively immobile and structured water. Consequently, viscosity values are substantially greater than in the bulk, and electrostatic potential profiles are oscillatory in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
值得完成签到,获得积分10
1秒前
1秒前
远山完成签到,获得积分10
2秒前
星星发布了新的文献求助10
2秒前
nanhe698发布了新的文献求助20
2秒前
阳光无声完成签到,获得积分10
2秒前
金色年华发布了新的文献求助10
2秒前
shatang完成签到,获得积分10
3秒前
4秒前
Owen应助一天八杯水采纳,获得10
4秒前
所所应助静静子采纳,获得10
5秒前
所所应助jy采纳,获得10
5秒前
hkxfg完成签到,获得积分10
5秒前
duo完成签到,获得积分10
6秒前
7秒前
spurs17发布了新的文献求助10
7秒前
7秒前
善学以致用应助BaekHyun采纳,获得10
7秒前
8秒前
8秒前
nanhe698完成签到,获得积分10
9秒前
9秒前
李本来完成签到,获得积分20
10秒前
看看发布了新的文献求助10
10秒前
ZZY完成签到,获得积分10
10秒前
DQY完成签到,获得积分10
11秒前
BONBON完成签到,获得积分20
11秒前
动听导师发布了新的文献求助10
12秒前
12秒前
季忆完成签到,获得积分10
12秒前
小周发布了新的文献求助10
13秒前
smile发布了新的文献求助10
13秒前
14秒前
Lore完成签到 ,获得积分10
14秒前
14秒前
jiang完成签到,获得积分10
15秒前
15秒前
无奈的酒窝关注了科研通微信公众号
16秒前
毛毛完成签到,获得积分10
16秒前
正在完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808