Global risk of deadly heat

环境科学 气候变化 人口 气候学 温室气体 全球变暖 热带 气候模式 大气科学 生态学 环境卫生 生物 医学 地质学
作者
Camilo Mora,Bénédicte Dousset,Iain R. Caldwell,Farrah E. Powell,Rollan C. Geronimo,Coral R. Bielecki,Chelsie W. W. Counsell,Bonnie S. Dietrich,Emily T. Johnston,Leo V. Louis,Matthew P. Lucas,Marie M. McKenzie,Alessandra G. Shea,Han Tseng,Thomas W. Giambelluca,Lisa R. Leon,Ed Hawkins,Clay Trauernicht
出处
期刊:Nature Climate Change [Springer Nature]
卷期号:7 (7): 501-506 被引量:1415
标识
DOI:10.1038/nclimate3322
摘要

Climatic conditions that challenge human thermoregulatory capacity currently affect around a quarter of the world’s population annually. Such conditions are projected to increase in line with CO2 emissions particularly in the humid tropics. Climate change can increase the risk of conditions that exceed human thermoregulatory capacity1,2,3,4,5,6. Although numerous studies report increased mortality associated with extreme heat events1,2,3,4,5,6,7, quantifying the global risk of heat-related mortality remains challenging due to a lack of comparable data on heat-related deaths2,3,4,5. Here we conducted a global analysis of documented lethal heat events to identify the climatic conditions associated with human death and then quantified the current and projected occurrence of such deadly climatic conditions worldwide. We reviewed papers published between 1980 and 2014, and found 783 cases of excess human mortality associated with heat from 164 cities in 36 countries. Based on the climatic conditions of those lethal heat events, we identified a global threshold beyond which daily mean surface air temperature and relative humidity become deadly. Around 30% of the world’s population is currently exposed to climatic conditions exceeding this deadly threshold for at least 20 days a year. By 2100, this percentage is projected to increase to ∼48% under a scenario with drastic reductions of greenhouse gas emissions and ∼74% under a scenario of growing emissions. An increasing threat to human life from excess heat now seems almost inevitable, but will be greatly aggravated if greenhouse gases are not considerably reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
L山间葱发布了新的文献求助10
1秒前
yuan完成签到,获得积分10
1秒前
2R完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助yqsf789采纳,获得10
1秒前
Dyson Hou发布了新的文献求助10
2秒前
2秒前
李丽完成签到,获得积分20
2秒前
落后十八完成签到,获得积分10
2秒前
0812完成签到,获得积分10
2秒前
2秒前
伦爸爸完成签到,获得积分10
3秒前
忧虑的鹭洋完成签到,获得积分10
3秒前
云ch发布了新的文献求助10
3秒前
3秒前
蓝天发布了新的文献求助10
3秒前
miemiemie完成签到,获得积分10
3秒前
华仔应助李欣悦采纳,获得10
4秒前
4秒前
Echo_枕星关注了科研通微信公众号
4秒前
4秒前
光亮又晴发布了新的文献求助10
4秒前
4秒前
杜祖盛完成签到,获得积分10
4秒前
5秒前
5秒前
Zzz完成签到,获得积分20
5秒前
TINASO完成签到,获得积分10
6秒前
XIAOXIAOLI完成签到,获得积分10
6秒前
6秒前
yy完成签到,获得积分10
6秒前
喜悦一德发布了新的文献求助10
6秒前
李丽发布了新的文献求助10
6秒前
江一山发布了新的文献求助10
6秒前
SciGPT应助asda采纳,获得10
6秒前
necoe发布了新的文献求助30
7秒前
脑洞疼应助默默曼安采纳,获得10
7秒前
bkagyin应助Ganann采纳,获得10
7秒前
edtaa发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836