Acetic Acid Corrosion of Mild Steel: Mechanism and Prediction

醋酸 腐蚀 溶解 阴极保护 碳酸 化学 水溶液 电化学 无机化学 极化(电化学) 材料科学 电极 有机化学 物理化学
作者
Aria Kahyarian,Srdjan Nešić
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (15): 986-986
标识
DOI:10.1149/ma2017-01/15/986
摘要

The effect of acetic acid on the internal corrosion of pipeline steel have been studied by numerous researchers 1 . It is commonly believed that acetic acid is an additional corrosive species which is directly reduced at the metal surface, hence, provides the electron sink required for iron dissolution reaction to progress faster. This idea is stemming from an analogy to CO 2 corrosion where carbonic acid, the hydrated form of CO 2 , has been conventionally considered to be electrochemically active. However, depending on the environmental conditions, inconsistent trends for the effect of acetic acid on observed corrosion rates were reported 1 . The vast majority of the previous studies investigate the effect of acetic acid together with CO 2 corrosion. However, the complexity of the water chemistry associated with CO 2 corrosion and the additional twist by introducing acetic acid makes any mechanistic discussions difficult in such systems. The present study is a systematic investigation of acetic acid effect on aqueous corrosion of mild steel. The polarization behavior of acidic solutions at various acetic acid concentrations were used to discuss the underlying mechanism of the corrosion process. It was hypothesized that if acetic acid is not an electroactive species, the purely charge transfer controlled cathodic currents should not increase by increasing acetic acid concentrations 2 . The experimental steady state voltammograms obtained on an API-X65 mild steel rotating disk electrode at pH range from 3 to 5 and acetic acid concentrations up to 1000 ppm verified the aforementioned hypothesis. No significant increase of charge transfer cathodic currents were observed by increasing acetic acid concentration while the limiting currents followed a linear correlation with its concentration. Additionally, a significant inhibitive effect was observed on both cathodic and anodic currents in the presence of acetic acid. The polarization behavior of the system was further quantified by a comprehensive mathematical model 3 . The model was developed by solving the Nernst-Plank equation through the diffusion layer using newsman’s “BAND” algorithm, which accounts for molecular diffusion, electro-migration, convective flow, homogeneous reactions as well as the two electrochemical reaction, iron dissolution and hydrogen ion reduction at the metal surface. The inhibitive effect of acetic acid was shown to correlate with a Temkin type adsorption isotherm for acetic acid, with a good approximation. A reasonable agreement with the experimental voltammograms were obtained, confirming that acetic acid is not a significant electro-active species in the conditions considered in the present study. The experimental corrosion rates obtained using linear polarization resistance measurements at temperatures from 30 to 50 o C, rotation rates from 125 to 2000 rpm, pH from 3 to 5 and acetic acid concentrations from 0 to 1000 ppm were compared with the values predicted by the model as shown in Figure below, where a reasonable agreement were found. The inconsistent reports of the effect of acetic acid on the observed corrosion rates may therefore be explained by considering these two opposing effects: - Acetic acid increases the limiting current by buffering the surface concentration of hydrogen ions, therefore increasing its concentration would increase the corrosion current linearly, if it is under mass transfer control. - Acetic acid inhibits the charge transfer rates of both cathodic and anodic reactions, therefore increasing its concentration would decrease the corrosion current, if it is under charge transfer control. References: 1. E. Gulbrandsen and K. Bilkova, in NACE International ,, p. Paper No. 364 (2006). 2. A. Kahyarian, B. Brown, and S. Nesic, Corrosion , 72 , 1539–1546 (2016). 3. A. Kahyarian, M. Singer, and S. Nesic, J. Nat. Gas Sci. Eng. , 29 , 530–549 (2016). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的鲂完成签到,获得积分10
1秒前
天天快乐应助木可采纳,获得10
1秒前
1秒前
pywangsmmu92完成签到,获得积分10
1秒前
金鱼驳回了Akim应助
2秒前
2秒前
bckl888发布了新的文献求助10
4秒前
ing关闭了ing文献求助
4秒前
沉默高跟鞋完成签到,获得积分10
5秒前
桐月十六完成签到 ,获得积分10
5秒前
9秒前
9秒前
CharlesL完成签到,获得积分10
11秒前
SciGPT应助lzx采纳,获得10
11秒前
安雯完成签到 ,获得积分10
11秒前
12秒前
12秒前
文静湘完成签到,获得积分10
15秒前
科研通AI2S应助兴奋千兰采纳,获得10
15秒前
16秒前
孙燕应助wang采纳,获得20
16秒前
Katherine完成签到,获得积分10
16秒前
雪白的听寒完成签到 ,获得积分10
17秒前
变式拓展发布了新的文献求助10
18秒前
木可发布了新的文献求助10
18秒前
大个应助帅男采纳,获得10
18秒前
怡然乌完成签到,获得积分10
18秒前
酷炫的幻丝完成签到 ,获得积分10
20秒前
HDM完成签到 ,获得积分10
22秒前
22秒前
luchong发布了新的文献求助10
22秒前
英俊白莲发布了新的文献求助80
29秒前
pp.gsyx完成签到,获得积分10
29秒前
luchong完成签到,获得积分10
29秒前
不是省油的灯完成签到 ,获得积分10
30秒前
sunglow11完成签到,获得积分0
30秒前
愤怒的念烟完成签到,获得积分20
31秒前
dong应助lm采纳,获得10
31秒前
菜芽君完成签到,获得积分10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176