Acetic Acid Corrosion of Mild Steel: Mechanism and Prediction

醋酸 腐蚀 溶解 阴极保护 碳酸 化学 水溶液 电化学 无机化学 极化(电化学) 材料科学 电极 有机化学 物理化学
作者
Aria Kahyarian,Srdjan Nešić
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (15): 986-986
标识
DOI:10.1149/ma2017-01/15/986
摘要

The effect of acetic acid on the internal corrosion of pipeline steel have been studied by numerous researchers 1 . It is commonly believed that acetic acid is an additional corrosive species which is directly reduced at the metal surface, hence, provides the electron sink required for iron dissolution reaction to progress faster. This idea is stemming from an analogy to CO 2 corrosion where carbonic acid, the hydrated form of CO 2 , has been conventionally considered to be electrochemically active. However, depending on the environmental conditions, inconsistent trends for the effect of acetic acid on observed corrosion rates were reported 1 . The vast majority of the previous studies investigate the effect of acetic acid together with CO 2 corrosion. However, the complexity of the water chemistry associated with CO 2 corrosion and the additional twist by introducing acetic acid makes any mechanistic discussions difficult in such systems. The present study is a systematic investigation of acetic acid effect on aqueous corrosion of mild steel. The polarization behavior of acidic solutions at various acetic acid concentrations were used to discuss the underlying mechanism of the corrosion process. It was hypothesized that if acetic acid is not an electroactive species, the purely charge transfer controlled cathodic currents should not increase by increasing acetic acid concentrations 2 . The experimental steady state voltammograms obtained on an API-X65 mild steel rotating disk electrode at pH range from 3 to 5 and acetic acid concentrations up to 1000 ppm verified the aforementioned hypothesis. No significant increase of charge transfer cathodic currents were observed by increasing acetic acid concentration while the limiting currents followed a linear correlation with its concentration. Additionally, a significant inhibitive effect was observed on both cathodic and anodic currents in the presence of acetic acid. The polarization behavior of the system was further quantified by a comprehensive mathematical model 3 . The model was developed by solving the Nernst-Plank equation through the diffusion layer using newsman’s “BAND” algorithm, which accounts for molecular diffusion, electro-migration, convective flow, homogeneous reactions as well as the two electrochemical reaction, iron dissolution and hydrogen ion reduction at the metal surface. The inhibitive effect of acetic acid was shown to correlate with a Temkin type adsorption isotherm for acetic acid, with a good approximation. A reasonable agreement with the experimental voltammograms were obtained, confirming that acetic acid is not a significant electro-active species in the conditions considered in the present study. The experimental corrosion rates obtained using linear polarization resistance measurements at temperatures from 30 to 50 o C, rotation rates from 125 to 2000 rpm, pH from 3 to 5 and acetic acid concentrations from 0 to 1000 ppm were compared with the values predicted by the model as shown in Figure below, where a reasonable agreement were found. The inconsistent reports of the effect of acetic acid on the observed corrosion rates may therefore be explained by considering these two opposing effects: - Acetic acid increases the limiting current by buffering the surface concentration of hydrogen ions, therefore increasing its concentration would increase the corrosion current linearly, if it is under mass transfer control. - Acetic acid inhibits the charge transfer rates of both cathodic and anodic reactions, therefore increasing its concentration would decrease the corrosion current, if it is under charge transfer control. References: 1. E. Gulbrandsen and K. Bilkova, in NACE International ,, p. Paper No. 364 (2006). 2. A. Kahyarian, B. Brown, and S. Nesic, Corrosion , 72 , 1539–1546 (2016). 3. A. Kahyarian, M. Singer, and S. Nesic, J. Nat. Gas Sci. Eng. , 29 , 530–549 (2016). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉从筠发布了新的文献求助10
1秒前
zhangxiao完成签到,获得积分10
1秒前
科研通AI5应助落寞的易绿采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
wxyshare应助科研通管家采纳,获得10
2秒前
cherlie应助科研通管家采纳,获得20
2秒前
斯文败类应助邱化兴采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
chenjun7080发布了新的文献求助10
2秒前
今后应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
LPH应助科研通管家采纳,获得30
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Eva完成签到,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yyf发布了新的文献求助10
4秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019