A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm

支持向量机 曲率 有限元法 人工智能 计算机科学 机器学习 动脉瘤 回归分析 趋同(经济学) 回归 算法 数学 模式识别(心理学) 统计 放射科 医学 结构工程 工程类 几何学 经济增长 经济
作者
Liang Liang,Minliang Liu,Caitlin Martin,John A. Elefteriades,Wei Sun
出处
期刊:Biomechanics and Modeling in Mechanobiology [Springer Nature]
卷期号:16 (5): 1519-1533 被引量:142
标识
DOI:10.1007/s10237-017-0903-9
摘要

Geometric features of the aorta are linked to patient risk of rupture in the clinical decision to electively repair an ascending aortic aneurysm (AsAA). Previous approaches have focused on relationship between intuitive geometric features (e.g., diameter and curvature) and wall stress. This work investigates the feasibility of a machine learning approach to establish the linkages between shape features and FEA-predicted AsAA rupture risk, and it may serve as a faster surrogate for FEA associated with long simulation time and numerical convergence issues. This method consists of four main steps: (1) constructing a statistical shape model (SSM) from clinical 3D CT images of AsAA patients; (2) generating a dataset of representative aneurysm shapes and obtaining FEA-predicted risk scores defined as systolic pressure divided by rupture pressure (rupture is determined by a threshold criterion); (3) establishing relationship between shape features and risk by using classifiers and regressors; and (4) evaluating such relationship in cross-validation. The results show that SSM parameters can be used as strong shape features to make predictions of risk scores consistent with FEA, which lead to an average risk classification accuracy of 95.58% by using support vector machine and an average regression error of 0.0332 by using support vector regression, while intuitive geometric features have relatively weak performance. Compared to FEA, this machine learning approach is magnitudes faster. In our future studies, material properties and inhomogeneous thickness will be incorporated into the models and learning algorithms, which may lead to a practical system for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁静致远发布了新的文献求助10
1秒前
zhenpeng8888完成签到 ,获得积分10
1秒前
霜序初四完成签到 ,获得积分10
1秒前
2秒前
爆米花应助青木蓝采纳,获得10
2秒前
顾矜应助frank采纳,获得10
3秒前
heavennew完成签到,获得积分10
3秒前
充电宝应助绘梨衣采纳,获得10
4秒前
华仔应助励志小薛采纳,获得10
4秒前
4秒前
4秒前
单薄新烟发布了新的文献求助10
5秒前
5秒前
桐桐应助小王采纳,获得10
5秒前
6秒前
6秒前
6秒前
楚岸发布了新的文献求助10
8秒前
阿强哥20241101完成签到,获得积分10
8秒前
TQY完成签到,获得积分10
9秒前
Khr1stINK发布了新的文献求助10
9秒前
宁静致远完成签到,获得积分10
9秒前
mxbyccbaby完成签到,获得积分10
10秒前
10秒前
楼寒天发布了新的文献求助30
10秒前
10秒前
jdmeme完成签到 ,获得积分10
11秒前
DVD完成签到 ,获得积分10
12秒前
学术嫪毐完成签到,获得积分10
12秒前
Xyyy发布了新的文献求助10
13秒前
uu完成签到,获得积分10
13秒前
小蘑菇应助赵赵赵采纳,获得10
13秒前
阿兹卡班狂徒完成签到 ,获得积分10
13秒前
13秒前
yuefeng发布了新的文献求助10
14秒前
澳臻白发布了新的文献求助10
14秒前
15秒前
刘大妮发布了新的文献求助10
15秒前
15秒前
王欧尼发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794