电池(电)
储能
阴极
电解质
有机自由基电池
纳米技术
锂(药物)
过程(计算)
计算机科学
工艺工程
电气工程
材料科学
化学
电极
工程类
功率(物理)
物理
内分泌学
物理化学
操作系统
医学
量子力学
作者
Doron Aurbach,Bryan D. McCloskey,Linda F. Nazar,Peter G. Bruce
出处
期刊:Nature Energy
[Springer Nature]
日期:2016-09-08
卷期号:1 (9)
被引量:1094
标识
DOI:10.1038/nenergy.2016.128
摘要
The rechargeable lithium–air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium–air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium–air batteries. Lithium–air batteries offer great promise for high-energy storage capability but also pose tremendous challenges for their realization. This Review surveys recent advances in understanding the fundamental science that governs lithium–air battery operation, focusing on the reactions at the oxygen electrode.
科研通智能强力驱动
Strongly Powered by AbleSci AI