Emotions and multimedia learning: the moderating role of learner characteristics

心理学 好奇心 神经质 开放的体验 适度 认知 体验式学习 人格 认知心理学 社会心理学 数学教育 神经科学
作者
Lisa Knörzer,Roland Brünken,B. Park
出处
期刊:Journal of Computer Assisted Learning [Wiley]
卷期号:32 (6): 618-631 被引量:45
标识
DOI:10.1111/jcal.12158
摘要

Abstract The Cognitive‐Affective Theory of Learning with Media postulates that affective factors as well as individual learner characteristics impact multimedia learning. The present study investigated how experimentally induced positive and negative emotions influence multimedia learning and how learner characteristics moderated this impact. Results showed that the group with the negative emotion induction outperformed the group with the positive emotion induction with regard to learning outcome. Cognitive resources (working memory capacity, prior knowledge) and openness to experience were significant predictors for learning. In addition, learners with highest prior knowledge or working memory capacity could compensate the emotional impact on learning. Neuroticism enhanced the emotional impact on learning outcome as a moderator. Lay description What is already known about this topic: Emotions and learner characteristics are assumed to influence multimedia learning. There are inconsistent results on emotional impact on multimedia learning. Cognitive resources were shown to be predictors of learning outcomes. There are inconsistent results on how much learners' personality predicts learning. What this paper adds: Negative emotions can lead to higher learning outcomes than positive emotions. Cognitive resources are significant predictors for learning outcomes. Openness to experience predicts learning outcomes. Neuroticism enhances the emotional impact on multimedia learning. Implications for practice and/or policy: Learner characteristics and emotions influence multimedia learning. A very positive emotional state can be harmful to learning. Learners' personality can enhance emotional impact on multimedia learning. Learning environments should be designed to attract learners' curiosity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx33101128发布了新的文献求助10
1秒前
小蟹发布了新的文献求助30
2秒前
刘子子应助AAA建材王哥采纳,获得10
2秒前
3秒前
5秒前
大力的契发布了新的文献求助20
7秒前
香蕉觅云应助no_one采纳,获得10
9秒前
9秒前
李锐完成签到,获得积分10
10秒前
热心芷烟发布了新的文献求助10
10秒前
大个应助麋了鹿采纳,获得10
11秒前
jankac完成签到,获得积分10
11秒前
12秒前
JCTdeTanfo完成签到,获得积分10
13秒前
13秒前
tqg完成签到,获得积分10
14秒前
sy完成签到,获得积分10
15秒前
sunwx发布了新的文献求助20
15秒前
zanilia应助望TIAN采纳,获得10
15秒前
牛牛发布了新的文献求助10
16秒前
慕青应助trap采纳,获得10
17秒前
情怀应助易达采纳,获得30
17秒前
清森发布了新的文献求助10
18秒前
懒蛋完成签到,获得积分10
19秒前
19秒前
迅速的元龙完成签到 ,获得积分10
19秒前
桐桐应助jankac采纳,获得10
20秒前
善学以致用应助yasu采纳,获得10
21秒前
JamesPei应助lx33101128采纳,获得10
23秒前
23秒前
23秒前
wlgank发布了新的文献求助10
23秒前
24秒前
wanci应助111890采纳,获得10
24秒前
24秒前
26秒前
27秒前
Hello应助小孙采纳,获得10
28秒前
好运莲莲发布了新的文献求助20
28秒前
小蘑菇应助吴金旗采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256348
求助须知:如何正确求助?哪些是违规求助? 2898650
关于积分的说明 8301746
捐赠科研通 2567765
什么是DOI,文献DOI怎么找? 1394718
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557