Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks

计算机科学 计算卸载 小细胞 计算机网络 移动边缘计算 分布式计算 云计算 供应 边缘计算 能源消耗 移动计算 服务器 生态学 生物 操作系统
作者
Lixing Chen,Sheng Zhou,Jie Xu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 1619-1632 被引量:331
标识
DOI:10.1109/tnet.2018.2841758
摘要

The (ultra-)dense deployment of small-cell base stations (SBSs) endowed with cloud-like computing functionalities paves the way for pervasive mobile edge computing, enabling ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. To handle spatially uneven computation workloads in the network, cooperation among SBSs via workload peer offloading is essential to avoid large computation latency at overloaded SBSs and provide high quality of service to end users. However, performing effective peer offloading faces many unique challenges due to limited energy resources committed by self-interested SBS owners, uncertainties in the system dynamics, and co-provisioning of radio access and computing services. This paper develops a novel online SBS peer offloading framework, called online peer offloading (OPEN), by leveraging the Lyapunov technique, in order to maximize the long-term system performance while keeping the energy consumption of SBSs below individual long-term constraints. OPEN works online without requiring information about future system dynamics, yet provides provably near-optimal performance compared with the oracle solution that has the complete future information. In addition, this paper formulates a peer offloading game among SBSs and analyzes its equilibrium and efficiency loss in terms of the price of anarchy to thoroughly understand SBSs’ strategic behaviors, thereby enabling decentralized and autonomous peer offloading decision making. Extensive simulations are carried out and show that peer offloading among SBSs dramatically improves the edge computing performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助11111采纳,获得10
2秒前
高高完成签到 ,获得积分10
2秒前
3秒前
九天发布了新的文献求助10
3秒前
爆米花应助正直的龙五采纳,获得10
4秒前
脑洞疼应助温婉的香菇采纳,获得10
5秒前
5秒前
Panda完成签到 ,获得积分10
7秒前
第五元素完成签到,获得积分10
7秒前
qiqi1111发布了新的文献求助10
8秒前
8秒前
小仙女212完成签到,获得积分10
8秒前
tianzhanggong发布了新的文献求助30
8秒前
9秒前
Tree完成签到 ,获得积分10
9秒前
小仙女212发布了新的文献求助10
12秒前
12秒前
yy应助曹梦梦采纳,获得10
13秒前
13秒前
13秒前
白隐完成签到,获得积分10
14秒前
非而者厚应助Bruce采纳,获得30
15秒前
yyy关闭了yyy文献求助
15秒前
545完成签到,获得积分10
15秒前
16秒前
Stella完成签到,获得积分20
16秒前
小蘑菇应助每天都好困采纳,获得10
17秒前
vivianzhang发布了新的文献求助10
17秒前
z7777777完成签到,获得积分10
18秒前
545发布了新的文献求助10
18秒前
小纪完成签到 ,获得积分10
19秒前
大神水瓶座完成签到,获得积分10
20秒前
20秒前
22秒前
zhongu应助小仙女212采纳,获得10
22秒前
wangyr11完成签到,获得积分10
23秒前
科研通AI5应助Yile采纳,获得10
24秒前
脑洞疼应助莫离采纳,获得10
26秒前
26秒前
CHdengziqi完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442