Highly Stable and Efficient Catalyst with In Situ Exsolved Fe–Ni Alloy Nanospheres Socketed on an Oxygen Deficient Perovskite for Direct CO2 Electrolysis

材料科学 催化作用 电解 钙钛矿(结构) 化学工程 电化学 氧化物 氧气 无机化学 化学 电极 冶金 物理化学 工程类 电解质 生物化学 有机化学
作者
Subiao Liu,Qingxia Liu,Jing‐Li Luo
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:6 (9): 6219-6228 被引量:229
标识
DOI:10.1021/acscatal.6b01555
摘要

The massive emission of carbon dioxide (CO2), the major portion of greenhouse gases, has negatively affected our ecosystem. Developing new technologies to effectively reduce CO2 emission or convert CO2 to useful products has never been more imperative. In response to this challenge, we herein developed novel in situ exsolved Fe–Ni alloy nanospheres uniformly socketed on an oxygen-deficient perovskite [La(Sr)Fe(Ni)] as a highly stable and efficient catalyst for the effective conversion of CO2 to carbon monoxide (CO) in a high-temperature solid oxide electrolysis cell (HT-SOEC). The symmetry between the reduction and reoxidation cycles of this catalyst indicates its good redox reversibility. The cathodic reaction kinetics for CO2 electrolysis is significantly improved with a polarization resistance as low as 0.272 Ω cm2. In addition, a remarkably enhanced current density of 1.78 A cm–2, along with a high Faraday efficiency (∼98.8%), was achieved at 1.6 V and 850 °C. Moreover, the potentiostatic stability test of up to 100 h showed that the cell was stable without any noticeable coking in a CO2/CO (70:30) flow at an applied potential of 0.6 V (vs OCV) and 850 °C. The increased oxygen vacancies together with the in situ exsolved nanospheres on the perovskite backbone ensures sufficiently active sites and consequently improves the electrochemical performance for the efficient CO2 conversion. Therefore, this newly developed perovskite can be a promising cathode material for HT-SOEC. More generally, this study points to a new direction to develop highly efficient catalysts in the form of the perovskite oxides with perfectly in situ exsolved metal/bimetal nanospheres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分10
刚刚
所所应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
复杂的从彤完成签到 ,获得积分10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
小樊应助科研通管家采纳,获得50
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Lucas应助活力板凳采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
科研通AI5应助搞怪的青旋采纳,获得10
2秒前
2秒前
善学以致用应助沫含采纳,获得30
3秒前
JamesPei应助灵巧乘风采纳,获得10
3秒前
3秒前
3秒前
逆位迷宫完成签到,获得积分10
4秒前
koi发布了新的文献求助20
4秒前
meiguohuo完成签到,获得积分10
5秒前
惠飞薇发布了新的文献求助40
6秒前
聪明山芙完成签到,获得积分10
6秒前
非凡梦发布了新的文献求助10
7秒前
大模型应助yiyi采纳,获得10
9秒前
英吉利25发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
浪子应助羽柒er采纳,获得10
12秒前
xiaolei001应助怕黑的猕猴桃采纳,获得20
12秒前
May发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024326
求助须知:如何正确求助?哪些是违规求助? 4261408
关于积分的说明 13281423
捐赠科研通 4068273
什么是DOI,文献DOI怎么找? 2225249
邀请新用户注册赠送积分活动 1233992
关于科研通互助平台的介绍 1157939