亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Approach for Bearing Fault Diagnosis

短时傅里叶变换 断层(地质) 方位(导航) 计算机科学 深度学习 人工神经网络 人工智能 状态监测 数据挖掘 模式识别(心理学) 机器学习 工程类 傅里叶变换 地质学 地震学 数学分析 电气工程 傅里叶分析 数学
作者
Miao He,David He
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 3057-3065 被引量:454
标识
DOI:10.1109/tia.2017.2661250
摘要

Bearing is one of the most critical components in most electrical and power drives. Effective bearing fault diagnosis is important for keeping the electrical and power drives safe and operating normally. In the age of Internet of Things and Industrial 4.0, massive real-time data are collected from bearing health monitoring systems. Mechanical big data have the characteristics of large volume, diversity, and high velocity. There are two major problems in using the existing methods for bearing fault diagnosis with big data. The features are manually extracted relying on much prior knowledge about signal processing techniques and diagnostic expertise, and the used models have shallow architectures, limiting their capability in fault diagnosis. Effectively mining features from big data and accurately identifying the bearing health conditions with new advanced methods have become new issues. This paper presents a deep learning-based approach for bearing fault diagnosis. The presented approach preprocesses sensor signals using short-time Fourier transform (STFT). Based on a simple spectrum matrix obtained by STFT, an optimized deep learning structure, large memory storage retrieval (LAMSTAR) neural network, is built to diagnose the bearing faults. Acoustic emission signals acquired from a bearing test rig are used to validate the presented method. The validation results show the accurate classification performance on various bearing faults under different working conditions. The performance of the presented method is also compared with other effective bearing fault diagnosis methods reported in the literature. The comparison results have shown that the presented method gives much better diagnostic performance, even at relatively low rotating speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助陳.采纳,获得10
3秒前
CodeCraft应助陳.采纳,获得10
3秒前
希望天下0贩的0应助陳.采纳,获得10
3秒前
领导范儿应助陳.采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
7秒前
9秒前
12秒前
吕敬瑶发布了新的文献求助10
12秒前
TEMPO发布了新的文献求助30
17秒前
尼大王完成签到,获得积分10
35秒前
scott_zip完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
53秒前
TEMPO完成签到,获得积分10
1分钟前
1分钟前
忆昔发布了新的文献求助10
1分钟前
1分钟前
sxmt123456789完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
王小雨完成签到 ,获得积分10
2分钟前
ssu90完成签到 ,获得积分10
2分钟前
愉快谷芹完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
陳.发布了新的文献求助10
2分钟前
陳.发布了新的文献求助10
2分钟前
大帅哥完成签到 ,获得积分10
3分钟前
3分钟前
jjiiii发布了新的文献求助10
3分钟前
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
zz完成签到,获得积分10
4分钟前
4分钟前
谦让山槐完成签到 ,获得积分10
4分钟前
Criminology34应助ceeray23采纳,获得20
5分钟前
顾矜应助越听初采纳,获得10
5分钟前
5分钟前
ceeray23发布了新的文献求助20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
哈哈关注了科研通微信公众号
6分钟前
缥缈的觅风完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634843
求助须知:如何正确求助?哪些是违规求助? 4733993
关于积分的说明 14989356
捐赠科研通 4792596
什么是DOI,文献DOI怎么找? 2559701
邀请新用户注册赠送积分活动 1520021
关于科研通互助平台的介绍 1480086