Deep Learning Based Approach for Bearing Fault Diagnosis

短时傅里叶变换 断层(地质) 方位(导航) 计算机科学 深度学习 人工神经网络 人工智能 状态监测 数据挖掘 模式识别(心理学) 机器学习 工程类 傅里叶变换 地质学 地震学 数学分析 电气工程 傅里叶分析 数学
作者
Miao He,David He
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 3057-3065 被引量:450
标识
DOI:10.1109/tia.2017.2661250
摘要

Bearing is one of the most critical components in most electrical and power drives. Effective bearing fault diagnosis is important for keeping the electrical and power drives safe and operating normally. In the age of Internet of Things and Industrial 4.0, massive real-time data are collected from bearing health monitoring systems. Mechanical big data have the characteristics of large volume, diversity, and high velocity. There are two major problems in using the existing methods for bearing fault diagnosis with big data. The features are manually extracted relying on much prior knowledge about signal processing techniques and diagnostic expertise, and the used models have shallow architectures, limiting their capability in fault diagnosis. Effectively mining features from big data and accurately identifying the bearing health conditions with new advanced methods have become new issues. This paper presents a deep learning-based approach for bearing fault diagnosis. The presented approach preprocesses sensor signals using short-time Fourier transform (STFT). Based on a simple spectrum matrix obtained by STFT, an optimized deep learning structure, large memory storage retrieval (LAMSTAR) neural network, is built to diagnose the bearing faults. Acoustic emission signals acquired from a bearing test rig are used to validate the presented method. The validation results show the accurate classification performance on various bearing faults under different working conditions. The performance of the presented method is also compared with other effective bearing fault diagnosis methods reported in the literature. The comparison results have shown that the presented method gives much better diagnostic performance, even at relatively low rotating speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有点儿微胖完成签到,获得积分10
1秒前
细心天德完成签到,获得积分10
1秒前
1秒前
开放幻丝发布了新的文献求助10
1秒前
ntrip完成签到,获得积分10
2秒前
3秒前
传奇3应助ldgsd采纳,获得10
3秒前
橙酒发布了新的文献求助10
4秒前
普外科老白完成签到,获得积分10
7秒前
欣慰立轩发布了新的文献求助10
7秒前
浮游应助彤彤采纳,获得10
8秒前
土豆淀粉发布了新的文献求助10
8秒前
小熙完成签到 ,获得积分10
11秒前
11秒前
得己完成签到 ,获得积分10
11秒前
12秒前
忆落完成签到 ,获得积分10
14秒前
士兵许三多完成签到,获得积分10
15秒前
SciGPT应助cczz采纳,获得10
16秒前
机智毛豆完成签到,获得积分10
16秒前
周花花完成签到 ,获得积分10
19秒前
liars完成签到 ,获得积分10
21秒前
22秒前
研友_VZG7GZ应助纯真忆安采纳,获得10
22秒前
开放幻丝完成签到,获得积分10
23秒前
LILI完成签到 ,获得积分10
24秒前
巧兮完成签到 ,获得积分10
25秒前
丰富烧鹅完成签到,获得积分10
26秒前
饱满一手完成签到 ,获得积分10
26秒前
萨伊普完成签到,获得积分20
27秒前
cczz发布了新的文献求助10
28秒前
Akim应助加油搬砖采纳,获得10
29秒前
blink_gmx完成签到,获得积分10
30秒前
燕子完成签到,获得积分10
30秒前
科研老兵完成签到,获得积分10
31秒前
子木完成签到 ,获得积分10
33秒前
2589完成签到,获得积分10
33秒前
山鲁佐德完成签到,获得积分10
33秒前
一只小小鸟完成签到 ,获得积分10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282