Deep Learning Based Approach for Bearing Fault Diagnosis

短时傅里叶变换 断层(地质) 方位(导航) 计算机科学 深度学习 人工神经网络 人工智能 状态监测 数据挖掘 模式识别(心理学) 机器学习 工程类 傅里叶变换 地质学 地震学 数学分析 电气工程 傅里叶分析 数学
作者
Miao He,David He
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 3057-3065 被引量:454
标识
DOI:10.1109/tia.2017.2661250
摘要

Bearing is one of the most critical components in most electrical and power drives. Effective bearing fault diagnosis is important for keeping the electrical and power drives safe and operating normally. In the age of Internet of Things and Industrial 4.0, massive real-time data are collected from bearing health monitoring systems. Mechanical big data have the characteristics of large volume, diversity, and high velocity. There are two major problems in using the existing methods for bearing fault diagnosis with big data. The features are manually extracted relying on much prior knowledge about signal processing techniques and diagnostic expertise, and the used models have shallow architectures, limiting their capability in fault diagnosis. Effectively mining features from big data and accurately identifying the bearing health conditions with new advanced methods have become new issues. This paper presents a deep learning-based approach for bearing fault diagnosis. The presented approach preprocesses sensor signals using short-time Fourier transform (STFT). Based on a simple spectrum matrix obtained by STFT, an optimized deep learning structure, large memory storage retrieval (LAMSTAR) neural network, is built to diagnose the bearing faults. Acoustic emission signals acquired from a bearing test rig are used to validate the presented method. The validation results show the accurate classification performance on various bearing faults under different working conditions. The performance of the presented method is also compared with other effective bearing fault diagnosis methods reported in the literature. The comparison results have shown that the presented method gives much better diagnostic performance, even at relatively low rotating speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的难敌完成签到,获得积分10
1秒前
彩色石头发布了新的文献求助10
1秒前
小哈完成签到,获得积分10
1秒前
可爱的函函应助明理黑猫采纳,获得10
1秒前
llltencion发布了新的文献求助10
2秒前
chenchen发布了新的文献求助10
2秒前
Jerez发布了新的文献求助10
3秒前
3秒前
Plucky完成签到,获得积分10
3秒前
4秒前
4秒前
stone完成签到,获得积分10
4秒前
5秒前
Lesley完成签到 ,获得积分10
7秒前
7秒前
彩色石头完成签到,获得积分10
8秒前
8秒前
天天快乐应助Lmj采纳,获得10
8秒前
wwl完成签到,获得积分10
9秒前
科研通AI2S应助ARIA采纳,获得10
9秒前
9秒前
10秒前
希望天下0贩的0应助迫切采纳,获得10
10秒前
zzg发布了新的文献求助10
10秒前
Akim应助MCY采纳,获得10
11秒前
去糖少冰发布了新的文献求助10
11秒前
莉莉是天使完成签到,获得积分10
11秒前
快乐滑板应助研友_ZbMNPn采纳,获得10
14秒前
14秒前
小兔叽完成签到,获得积分10
14秒前
英吉利25发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
雨中过客发布了新的文献求助10
15秒前
16秒前
咸鱼不翻身应助chenchen采纳,获得10
16秒前
zjgjnu完成签到,获得积分10
16秒前
19秒前
Lmj发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953