亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Approach for Bearing Fault Diagnosis

短时傅里叶变换 断层(地质) 方位(导航) 计算机科学 深度学习 人工神经网络 人工智能 状态监测 数据挖掘 模式识别(心理学) 机器学习 工程类 傅里叶变换 地质学 地震学 数学分析 电气工程 傅里叶分析 数学
作者
Miao He,David He
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 3057-3065 被引量:399
标识
DOI:10.1109/tia.2017.2661250
摘要

Bearing is one of the most critical components in most electrical and power drives. Effective bearing fault diagnosis is important for keeping the electrical and power drives safe and operating normally. In the age of Internet of Things and Industrial 4.0, massive real-time data are collected from bearing health monitoring systems. Mechanical big data have the characteristics of large volume, diversity, and high velocity. There are two major problems in using the existing methods for bearing fault diagnosis with big data. The features are manually extracted relying on much prior knowledge about signal processing techniques and diagnostic expertise, and the used models have shallow architectures, limiting their capability in fault diagnosis. Effectively mining features from big data and accurately identifying the bearing health conditions with new advanced methods have become new issues. This paper presents a deep learning-based approach for bearing fault diagnosis. The presented approach preprocesses sensor signals using short-time Fourier transform (STFT). Based on a simple spectrum matrix obtained by STFT, an optimized deep learning structure, large memory storage retrieval (LAMSTAR) neural network, is built to diagnose the bearing faults. Acoustic emission signals acquired from a bearing test rig are used to validate the presented method. The validation results show the accurate classification performance on various bearing faults under different working conditions. The performance of the presented method is also compared with other effective bearing fault diagnosis methods reported in the literature. The comparison results have shown that the presented method gives much better diagnostic performance, even at relatively low rotating speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Frank采纳,获得10
1分钟前
1分钟前
再给我来点抽象的应助Jim采纳,获得10
2分钟前
科研通AI5应助榆果子采纳,获得10
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
孙孙应助Jim采纳,获得30
3分钟前
充电宝应助EliotFang采纳,获得10
3分钟前
3分钟前
陈杰发布了新的文献求助10
4分钟前
kuoping完成签到,获得积分0
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
nickel完成签到,获得积分10
5分钟前
5分钟前
EliotFang发布了新的文献求助10
5分钟前
沉沉完成签到 ,获得积分0
5分钟前
6分钟前
6分钟前
Frank发布了新的文献求助10
6分钟前
oleskarabach发布了新的文献求助10
6分钟前
EliotFang完成签到,获得积分10
6分钟前
fsznc完成签到 ,获得积分0
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
oleskarabach发布了新的文献求助10
7分钟前
CipherSage应助科研通管家采纳,获得10
8分钟前
开心完成签到 ,获得积分10
8分钟前
8分钟前
顾矜应助zsc采纳,获得10
8分钟前
榆果子发布了新的文献求助10
9分钟前
榆果子完成签到,获得积分10
9分钟前
我是笨蛋完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
荆棘鸟发布了新的文献求助10
10分钟前
正传阿飞完成签到,获得积分10
10分钟前
隐形曼青应助荆棘鸟采纳,获得10
10分钟前
荆棘鸟完成签到,获得积分10
10分钟前
10分钟前
Frank完成签到,获得积分10
10分钟前
鲤鱼听荷完成签到 ,获得积分10
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976