Optimizing Properties of Antireceptor Antibodies Using Kinetic Computational Models and Experiments

计算生物学 生物系统 材料科学 生物
作者
Brian D. Harms,Jeffrey D. Kearns,Stephen Su,Neeraj Kohli,Ulrik B. Nielsen,Birgit Schoeberl
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 67-87 被引量:27
标识
DOI:10.1016/b978-0-12-416039-2.00004-5
摘要

Monoclonal antibodies are valuable as anticancer therapeutics because of their ability to selectively bind tumor-associated target proteins like receptor tyrosine kinases. Kinetic computational models that capture protein–protein interactions using mass action kinetics are a valuable tool for understanding the binding properties of monoclonal antibodies to their targets. Insights from the models can be used to explore different formats, to set antibody design specifications such as affinity and valence, and to predict potency. Antibody binding to target is driven by both intrinsic monovalent affinity and bivalent avidity. In this chapter, we describe a combined experimental and computational method of assessing the relative importance of these effects on observed drug potency. The method, which we call virtual flow cytometry (VFC), merges experimental measurements of monovalent antibody binding kinetics and affinity curves of antibody–antigen binding into a kinetic computational model of antibody–antigen interaction. The VFC method introduces a parameter χ, the avidity factor, which characterizes the ability of an antibody to cross-link its target through bivalent binding. This simple parameterization of antibody cross-linking allows the model to successfully describe and predict antibody binding curves across a wide variety of experimental conditions, including variations in target expression level and incubation time of antibody with target. We further demonstrate how computational models of antibody binding to cells can be used to predict target inhibition potency. Importantly, we demonstrate computationally that antibodies with high ability to cross-link antigen have significant potency advantages. We also present data suggesting that the parameter χ is a physical, epitope-dependent property of an antibody, and as a result propose that determination of antibody cross-linking and avidity should be incorporated into the screening of antibody panels for therapeutic development. Overall, our results suggest that antibody cross-linking, in addition to monovalent binding affinity, is a key design parameter of antibody performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NICKPLZ完成签到,获得积分10
刚刚
王小红完成签到,获得积分10
1秒前
阿泽发布了新的文献求助10
1秒前
周ZHOU发布了新的文献求助10
1秒前
Fall完成签到,获得积分10
1秒前
bbh完成签到,获得积分10
2秒前
orixero应助Song采纳,获得10
2秒前
2秒前
科研通AI6应助rydrb采纳,获得10
2秒前
猪猪hero应助聪慧的如彤采纳,获得10
2秒前
2秒前
3秒前
安珊发布了新的文献求助30
3秒前
星辰大海应助大帅采纳,获得10
3秒前
draw9708发布了新的文献求助10
4秒前
林献关注了科研通微信公众号
4秒前
万能图书馆应助osachon采纳,获得10
4秒前
4秒前
小也同学发布了新的文献求助10
4秒前
zqy完成签到,获得积分10
5秒前
华仔应助温暖冰颜采纳,获得10
5秒前
苹果完成签到,获得积分20
5秒前
lacusw完成签到 ,获得积分10
5秒前
Twonej应助Agee_Feng采纳,获得30
5秒前
猪猪hero发布了新的文献求助10
5秒前
zhang03发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
陈打铁完成签到,获得积分10
6秒前
6秒前
6秒前
tianliyan发布了新的文献求助10
6秒前
7秒前
流星完成签到,获得积分10
7秒前
7秒前
粗暴的海豚完成签到,获得积分10
7秒前
英俊的铭应助xxy采纳,获得10
7秒前
陶醉怜容完成签到,获得积分10
7秒前
晚风完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188