Optimizing Properties of Antireceptor Antibodies Using Kinetic Computational Models and Experiments

计算生物学 生物系统 材料科学 生物
作者
Brian D. Harms,Jeffrey D. Kearns,Stephen Su,Neeraj Kohli,Ulrik B. Nielsen,Birgit Schoeberl
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 67-87 被引量:27
标识
DOI:10.1016/b978-0-12-416039-2.00004-5
摘要

Monoclonal antibodies are valuable as anticancer therapeutics because of their ability to selectively bind tumor-associated target proteins like receptor tyrosine kinases. Kinetic computational models that capture protein–protein interactions using mass action kinetics are a valuable tool for understanding the binding properties of monoclonal antibodies to their targets. Insights from the models can be used to explore different formats, to set antibody design specifications such as affinity and valence, and to predict potency. Antibody binding to target is driven by both intrinsic monovalent affinity and bivalent avidity. In this chapter, we describe a combined experimental and computational method of assessing the relative importance of these effects on observed drug potency. The method, which we call virtual flow cytometry (VFC), merges experimental measurements of monovalent antibody binding kinetics and affinity curves of antibody–antigen binding into a kinetic computational model of antibody–antigen interaction. The VFC method introduces a parameter χ, the avidity factor, which characterizes the ability of an antibody to cross-link its target through bivalent binding. This simple parameterization of antibody cross-linking allows the model to successfully describe and predict antibody binding curves across a wide variety of experimental conditions, including variations in target expression level and incubation time of antibody with target. We further demonstrate how computational models of antibody binding to cells can be used to predict target inhibition potency. Importantly, we demonstrate computationally that antibodies with high ability to cross-link antigen have significant potency advantages. We also present data suggesting that the parameter χ is a physical, epitope-dependent property of an antibody, and as a result propose that determination of antibody cross-linking and avidity should be incorporated into the screening of antibody panels for therapeutic development. Overall, our results suggest that antibody cross-linking, in addition to monovalent binding affinity, is a key design parameter of antibody performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
小王时发布了新的文献求助10
3秒前
CJM完成签到,获得积分10
3秒前
尔尔完成签到,获得积分10
3秒前
maybe发布了新的文献求助10
3秒前
FashionBoy应助坚定的语芙采纳,获得10
3秒前
4秒前
尼斯卡完成签到,获得积分10
4秒前
5秒前
顾飞飞完成签到,获得积分10
5秒前
5秒前
PSA发布了新的文献求助10
6秒前
德克发布了新的文献求助10
6秒前
12334发布了新的文献求助10
6秒前
捕鱼小猫勇往直前完成签到,获得积分10
6秒前
水水完成签到,获得积分10
7秒前
luo发布了新的文献求助30
8秒前
嘻嘻乙烯完成签到,获得积分10
8秒前
贰鸟应助自觉雨灵采纳,获得10
8秒前
深情的采波完成签到,获得积分10
9秒前
六点一横发布了新的文献求助10
10秒前
李西瓜完成签到 ,获得积分10
10秒前
12秒前
14秒前
wysky37发布了新的文献求助10
14秒前
14秒前
hunajx完成签到,获得积分10
15秒前
风花雪月发布了新的文献求助10
16秒前
SDNUDRUG发布了新的文献求助10
16秒前
小冉不熬夜完成签到 ,获得积分10
16秒前
大锤完成签到,获得积分10
16秒前
Singularity应助果实采纳,获得10
17秒前
17秒前
17秒前
IMkily发布了新的文献求助10
18秒前
987完成签到 ,获得积分10
18秒前
Lucas应助wysky37采纳,获得10
18秒前
眼睛大雨筠应助乐观的雨采纳,获得30
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152