Spatial variability of soil organic matter using remote sensing data

遥感 环境科学 空间变异性 土壤科学 有机质 数字土壤制图 土壤有机质 水文学(农业) 地质学 土壤水分 土壤图 岩土工程 生态学 统计 数学 生物
作者
Salman Mirzaee,Shoja Ghorbani-Dashtaki,J. Mohammadi,Hossein Asadi,Farrokh Asadzadeh
出处
期刊:Catena [Elsevier BV]
卷期号:145: 118-127 被引量:146
标识
DOI:10.1016/j.catena.2016.05.023
摘要

Abstract Estimation of soil organic matter (SOM) at unsampled locations is crucial in agronomical and environmental studies. In this study, the ability of geostatistical methods such as ordinary kriging (OK), simple kriging (SK) and cokriging (CK) and hybrid geostatistical methods such as regression-simple kriging (RSK)/-ordinary kriging (ROK) and artificial neural network-simple kriging (ANNSK)/-ordinary kriging (ANNOK) was evaluated to predict SOM content. To this end, a set of 100 soil samples were collected from 0 to 15 cm depth of agricultural soils in Selin plain, northwest of Iran. The organic carbon was measured using Walkley–Black method. An auxiliary variable was provided by remote sensing data (Landsat 7 ETM +). Three performance criteria including mean error (ME), root mean square error (RMSE) and coefficient of determination (R 2 ) were used to evaluate the performance of the derived models. The results showed that the ANN model that used principal components (PCs) as input variables, performed better than the multiple linear regression (MLR) model. The hybrid geostatistical methods, which include ANNOK, ANNSK, ROK and RSK provided more reliable predictions than the geostatistical methods, which include SK, OK and CK. In general, the best prediction method for the estimation of SOM spatial distribution was the ANNOK model, which had the smallest RMSE (0.271%) and the highest R 2 (0.633). It was concluded that information from Landsat ETM + imagery is potential auxiliary variables for improving spatial prediction, monitoring SOM and development of high quality SOM maps, which is the primary step in site-specific soil management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuqinghui98发布了新的文献求助10
1秒前
芭娜55发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Hello应助专注巨人采纳,获得10
2秒前
略略完成签到,获得积分10
3秒前
dild发布了新的文献求助10
3秒前
eeeee完成签到,获得积分10
4秒前
5秒前
5秒前
Rondab应助我要查论文采纳,获得30
6秒前
6秒前
嘟嘟包发布了新的文献求助30
6秒前
香蕉觅云应助小梁采纳,获得10
6秒前
Akim应助结实大侠采纳,获得10
6秒前
小橘子发布了新的文献求助10
6秒前
7秒前
Cherie77发布了新的文献求助10
7秒前
9秒前
wst1988完成签到,获得积分10
9秒前
曼凡发布了新的文献求助10
10秒前
科研鸟发布了新的文献求助10
10秒前
12秒前
传奇3应助maq采纳,获得10
13秒前
舒心聪展完成签到,获得积分10
13秒前
英姑应助小橘子采纳,获得10
13秒前
科研通AI5应助念姬采纳,获得10
14秒前
16秒前
光亮的语兰完成签到,获得积分10
17秒前
klandcy完成签到,获得积分10
17秒前
汉堡包应助JJ采纳,获得10
18秒前
小鱼儿发布了新的文献求助10
19秒前
LCM666完成签到,获得积分10
19秒前
19秒前
艰苦侯完成签到 ,获得积分10
19秒前
20秒前
20秒前
小橘子完成签到,获得积分10
21秒前
Dominic完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420