材料科学
MXenes公司
电化学
正交晶系
纳米颗粒
电极
结晶学
法拉第效率
碳纤维
纳米技术
化学工程
复合材料
晶体结构
复合数
物理化学
工程类
化学
作者
Chuanfang Zhang,Seon Joon Kim,Michael Ghidiu,Meng‐Qiang Zhao,Michel W. Barsoum,Valeria Nicolosi,Yury Gogotsi
标识
DOI:10.1002/adfm.201600682
摘要
Engineering electrode nanostructures is critical in developing high‐capacity, fast rate‐response, and safe Li‐ion batteries. This study demonstrates the synthesis of orthorhombic Nb 2 O 5 @Nb 4 C 3 T x (or @Nb 2 CT x ) hierarchical composites via a one‐step oxidation —in flowing CO 2 at 850 °C —of 2D Nb 4 C 3 T x (or Nb 2 CT x ) MXene. The composites possess a layered architecture with orthorhombic Nb 2 O 5 nanoparticles decorated uniformly on the surface of the MXene flakes and interconnected by disordered carbon. The composites have a capacity of 208 mAh g −1 at a rate of 50 mA g −1 (0.25 C) in 1–3 V versus Li + /Li, and retain 94% of the specific capacity with 100% Coulombic efficiency after 400 cycles. The good electrochemical performances could be attributed to three synergistic effects: (1) the high conductivity of the interior, unoxidized Nb 4 C 3 T x layers, (2) the fast rate response and high capacity of the external Nb 2 O 5 nanoparticles, and (3) the electron “bridge” effects of the disordered carbon. This oxidation method was successfully extended to Ti 3 C 2 T x and Nb 2 CT x MXenes to prepare corresponding composites with similar hierarchical structures. Since this is an early report on producing this structure, there is much room to push the boundaries further and achieve better electrochemical performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI