Meta-markers for the differential diagnosis of lung cancer and lung disease

肺癌 医学 鉴别诊断 生物标志物 肿瘤科 癌症 内科学 病理 疾病 荟萃分析 临床意义 肿瘤标志物 生物 生物化学
作者
Yong‐In Kim,Jung‐Mo Ahn,Hye-Jin Sung,Sang-Su Na,Jae‐Sung Hwang,Yongdai Kim,Je‐Yoel Cho
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:148: 36-43 被引量:18
标识
DOI:10.1016/j.jprot.2016.04.052
摘要

Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients.Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gabee完成签到 ,获得积分10
刚刚
典雅碧空应助科研通管家采纳,获得10
刚刚
单薄冰兰应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
JamesPei应助zzzzz采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
朴实的依风给澪澪澪的求助进行了留言
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
典雅碧空应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
leaolf应助科研通管家采纳,获得10
2秒前
arizaki7应助科研通管家采纳,获得10
2秒前
FashionBoy应助李金玉采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
小二郎应助加油女王采纳,获得10
2秒前
2秒前
3秒前
Zz完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
daisies应助lll采纳,获得20
7秒前
7秒前
老实绮琴发布了新的文献求助40
7秒前
8秒前
不想干活应助追寻的问玉采纳,获得30
8秒前
9秒前
素笺发布了新的文献求助10
9秒前
9秒前
ttt发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608788
求助须知:如何正确求助?哪些是违规求助? 4015227
关于积分的说明 12432502
捐赠科研通 3696489
什么是DOI,文献DOI怎么找? 2038043
邀请新用户注册赠送积分活动 1071144
科研通“疑难数据库(出版商)”最低求助积分说明 955017