Meta-markers for the differential diagnosis of lung cancer and lung disease

肺癌 医学 鉴别诊断 生物标志物 肿瘤科 癌症 内科学 病理 疾病 荟萃分析 临床意义 肿瘤标志物 生物 生物化学
作者
Yong‐In Kim,Jung‐Mo Ahn,Hye-Jin Sung,Sang-Su Na,Jae‐Sung Hwang,Yongdai Kim,Je‐Yoel Cho
出处
期刊:Journal of Proteomics [Elsevier]
卷期号:148: 36-43 被引量:18
标识
DOI:10.1016/j.jprot.2016.04.052
摘要

Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients.Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的跳跳糖完成签到,获得积分10
1秒前
北风完成签到,获得积分10
1秒前
华仔应助NMR采纳,获得10
1秒前
CatC完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助20
2秒前
yciDo完成签到,获得积分10
2秒前
3秒前
3秒前
ll完成签到 ,获得积分10
3秒前
大肥羊完成签到,获得积分10
4秒前
XuNan完成签到,获得积分10
4秒前
4秒前
不来也不去完成签到 ,获得积分10
4秒前
贪玩鸵鸟发布了新的文献求助20
4秒前
5秒前
5秒前
bjx完成签到,获得积分20
6秒前
大个应助沙糖桔采纳,获得10
6秒前
6秒前
称心的新之完成签到,获得积分10
7秒前
youshower完成签到,获得积分10
7秒前
独特山彤完成签到,获得积分10
7秒前
chen完成签到,获得积分10
8秒前
英姑应助uu采纳,获得10
8秒前
TRY发布了新的文献求助30
8秒前
Yzy发布了新的文献求助10
8秒前
8秒前
太叔明辉完成签到,获得积分10
9秒前
bjx发布了新的文献求助10
9秒前
烟花应助chen采纳,获得10
9秒前
害羞的墨镜完成签到,获得积分10
9秒前
10秒前
aowuao完成签到,获得积分10
10秒前
aikeyab完成签到 ,获得积分10
10秒前
LIANG发布了新的文献求助10
10秒前
yyygc完成签到,获得积分10
10秒前
guozizi发布了新的文献求助10
11秒前
Ludi完成签到,获得积分10
11秒前
viycole完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977