已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Meta-markers for the differential diagnosis of lung cancer and lung disease

肺癌 医学 鉴别诊断 生物标志物 肿瘤科 癌症 内科学 病理 疾病 荟萃分析 临床意义 肿瘤标志物 生物 生物化学
作者
Yong‐In Kim,Jung‐Mo Ahn,Hye-Jin Sung,Sang-Su Na,Jae‐Sung Hwang,Yongdai Kim,Je‐Yoel Cho
出处
期刊:Journal of Proteomics [Elsevier]
卷期号:148: 36-43 被引量:18
标识
DOI:10.1016/j.jprot.2016.04.052
摘要

Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients.Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到 ,获得积分10
刚刚
Rose994477发布了新的文献求助10
刚刚
SciGPT应助肖浩翔采纳,获得10
刚刚
nxy完成签到 ,获得积分10
刚刚
梦杭完成签到,获得积分10
刚刚
Moonlight完成签到 ,获得积分10
2秒前
啊哈哈哈哈哈完成签到 ,获得积分10
4秒前
刘辰完成签到 ,获得积分10
4秒前
学术混子雷雷雷雷雷完成签到,获得积分10
5秒前
清脆圆子完成签到 ,获得积分10
8秒前
二牛完成签到,获得积分10
9秒前
suxili完成签到 ,获得积分10
10秒前
BH完成签到,获得积分20
11秒前
高天雨完成签到 ,获得积分10
13秒前
77完成签到 ,获得积分10
13秒前
yuanyuan完成签到,获得积分10
14秒前
Akim应助flower采纳,获得10
15秒前
苏幕遮发布了新的文献求助10
17秒前
genshin发布了新的文献求助20
17秒前
小小发布了新的文献求助10
17秒前
18秒前
务实的一斩完成签到 ,获得积分10
18秒前
cc完成签到 ,获得积分10
19秒前
彭于晏应助计划采纳,获得30
19秒前
20秒前
临河盗龙完成签到,获得积分10
20秒前
22秒前
bkagyin应助cc采纳,获得10
22秒前
cciocio发布了新的文献求助10
23秒前
史昊昊发布了新的文献求助10
25秒前
26秒前
无花果应助苏幕遮采纳,获得10
27秒前
wanci应助满意妙梦采纳,获得10
28秒前
爱笑的羊青完成签到,获得积分10
28秒前
ding应助张家璐采纳,获得10
29秒前
Amelia完成签到 ,获得积分10
30秒前
特特雷珀萨努完成签到 ,获得积分10
30秒前
sunnn完成签到 ,获得积分10
32秒前
cc关注了科研通微信公众号
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599579
求助须知:如何正确求助?哪些是违规求助? 4685304
关于积分的说明 14838289
捐赠科研通 4669300
什么是DOI,文献DOI怎么找? 2538085
邀请新用户注册赠送积分活动 1505488
关于科研通互助平台的介绍 1470859