亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-markers for the differential diagnosis of lung cancer and lung disease

肺癌 医学 鉴别诊断 生物标志物 肿瘤科 癌症 内科学 病理 疾病 荟萃分析 临床意义 肿瘤标志物 生物 生物化学
作者
Yong‐In Kim,Jung‐Mo Ahn,Hye-Jin Sung,Sang-Su Na,Jae‐Sung Hwang,Yongdai Kim,Je‐Yoel Cho
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:148: 36-43 被引量:18
标识
DOI:10.1016/j.jprot.2016.04.052
摘要

Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients.Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
乐正怡完成签到 ,获得积分0
12秒前
酷酷煎蛋完成签到,获得积分20
18秒前
Daemon完成签到,获得积分10
19秒前
25秒前
小奋青完成签到 ,获得积分10
35秒前
39秒前
琪qi完成签到 ,获得积分10
43秒前
57秒前
宋子虎完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助悬壶济世之骨科采纳,获得10
1分钟前
baijiangtao完成签到,获得积分10
1分钟前
1分钟前
Lujiokh发布了新的文献求助10
1分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
在水一方应助Ximao1008采纳,获得10
2分钟前
wanci应助111采纳,获得10
2分钟前
明理夏波发布了新的文献求助10
2分钟前
平淡如天完成签到,获得积分10
2分钟前
落叶捎来讯息完成签到 ,获得积分10
2分钟前
baijiangtao发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ximao1008完成签到,获得积分20
2分钟前
2分钟前
Ximao1008发布了新的文献求助10
2分钟前
唐泽雪穗应助注恤明采纳,获得10
2分钟前
Ava应助缓慢的烨伟采纳,获得10
2分钟前
leo应助解颜采纳,获得10
2分钟前
2分钟前
Daemon发布了新的文献求助10
2分钟前
脑洞疼应助明理夏波采纳,获得10
2分钟前
天天快乐应助淡定的过客采纳,获得10
2分钟前
2分钟前
研友_8RyzBZ完成签到,获得积分20
2分钟前
晴天娃娃发布了新的文献求助10
3分钟前
3分钟前
Akim应助晴天娃娃采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137062
求助须知:如何正确求助?哪些是违规求助? 4337019
关于积分的说明 13510941
捐赠科研通 4175432
什么是DOI,文献DOI怎么找? 2289427
邀请新用户注册赠送积分活动 1289992
关于科研通互助平台的介绍 1231455