亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-markers for the differential diagnosis of lung cancer and lung disease

肺癌 医学 鉴别诊断 生物标志物 肿瘤科 癌症 内科学 病理 疾病 荟萃分析 临床意义 肿瘤标志物 生物 生物化学
作者
Yong‐In Kim,Jung‐Mo Ahn,Hye-Jin Sung,Sang-Su Na,Jae‐Sung Hwang,Yongdai Kim,Je‐Yoel Cho
出处
期刊:Journal of Proteomics [Elsevier]
卷期号:148: 36-43 被引量:18
标识
DOI:10.1016/j.jprot.2016.04.052
摘要

Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients.Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助桥西采纳,获得10
1秒前
科研通AI2S应助ceeray23采纳,获得20
1秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
小倒霉蛋完成签到 ,获得积分10
5秒前
7秒前
9秒前
Yiphy发布了新的文献求助200
13秒前
ding应助guoyufan采纳,获得10
14秒前
少管我完成签到 ,获得积分10
24秒前
小马甲应助ceeray23采纳,获得30
25秒前
34秒前
扣子完成签到,获得积分10
35秒前
39秒前
Owen应助wangxinling采纳,获得10
41秒前
CJJ发布了新的文献求助10
44秒前
52秒前
55秒前
罗乐天发布了新的文献求助10
57秒前
1分钟前
kuku发布了新的文献求助10
1分钟前
罗乐天完成签到,获得积分10
1分钟前
wop111应助ceeray23采纳,获得20
1分钟前
汉堡包应助罗乐天采纳,获得10
1分钟前
1分钟前
1分钟前
ho应助yy采纳,获得30
1分钟前
1分钟前
科研通AI6应助老杨妈采纳,获得100
1分钟前
juejue333完成签到,获得积分10
1分钟前
Shawn发布了新的文献求助10
1分钟前
科研通AI6应助朴素寄真采纳,获得30
1分钟前
wop111应助ceeray23采纳,获得20
1分钟前
kuku完成签到,获得积分10
1分钟前
一种信仰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
轩轩完成签到,获得积分10
1分钟前
桥西发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376334
求助须知:如何正确求助?哪些是违规求助? 4501440
关于积分的说明 14013025
捐赠科研通 4409203
什么是DOI,文献DOI怎么找? 2422108
邀请新用户注册赠送积分活动 1414895
关于科研通互助平台的介绍 1391758