重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Meta-markers for the differential diagnosis of lung cancer and lung disease

肺癌 医学 鉴别诊断 生物标志物 肿瘤科 癌症 内科学 病理 疾病 荟萃分析 临床意义 肿瘤标志物 生物 生物化学
作者
Yong‐In Kim,Jung‐Mo Ahn,Hye-Jin Sung,Sang-Su Na,Jae‐Sung Hwang,Yongdai Kim,Je‐Yoel Cho
出处
期刊:Journal of Proteomics [Elsevier]
卷期号:148: 36-43 被引量:18
标识
DOI:10.1016/j.jprot.2016.04.052
摘要

Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients.Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jyb发布了新的文献求助10
2秒前
搞怪夏天发布了新的文献求助10
2秒前
FashionBoy应助夜无疆采纳,获得10
2秒前
Lucas应助yyy采纳,获得10
2秒前
传奇3应助幸运儿比克斯采纳,获得30
3秒前
3秒前
3秒前
ybdst完成签到,获得积分10
3秒前
迷路的指甲油完成签到,获得积分10
4秒前
778完成签到,获得积分10
4秒前
费费发布了新的文献求助10
4秒前
小蘑菇应助Gfi采纳,获得10
4秒前
luria发布了新的文献求助10
4秒前
无为发布了新的文献求助10
4秒前
momomomo123完成签到,获得积分10
4秒前
客服小祥发布了新的文献求助10
5秒前
脑壳疼发布了新的文献求助10
5秒前
穆穆穆发布了新的文献求助10
5秒前
6秒前
jia发布了新的文献求助10
6秒前
文献孙完成签到,获得积分10
6秒前
6秒前
怡然的芯完成签到,获得积分10
6秒前
6秒前
Owen应助雪晴采纳,获得10
6秒前
abib完成签到,获得积分10
6秒前
伊伊发布了新的文献求助10
6秒前
田様应助Ldq采纳,获得10
7秒前
科研通AI6应助Ldq采纳,获得100
7秒前
酷波er应助Ldq采纳,获得10
7秒前
liangzai发布了新的文献求助10
7秒前
sk发布了新的文献求助10
7秒前
啊七飞完成签到,获得积分10
7秒前
刘汉淼完成签到,获得积分10
7秒前
watgos应助积极新筠采纳,获得10
7秒前
wangqianyu完成签到,获得积分10
7秒前
7秒前
研友_Zrl2pL完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590