Microstate functional connectivity in EEG cognitive tasks revealed by a multivariate Gaussian hidden Markov model with phase locking value

地方政府 多元统计 隐马尔可夫模型 计算机科学 脑电图 认知 马尔可夫链 高斯分布 功能连接 价值(数学) 人工智能 认知心理学 模式识别(心理学) 语音识别 心理学 机器学习 神经科学 物理 量子力学
作者
Nguyen Thanh Duc,Boreom Lee
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (2): 026033-026033 被引量:24
标识
DOI:10.1088/1741-2552/ab0169
摘要

Tracking the spatiotemporal fast (~100 ms) transient networks remains challenging due to a limited understanding of neural activity dynamics as well as a lack of relevant sophisticated methodologies. In this study, we introduce a novel approach to identify simultaneously distinct EEG microstates and their corresponding microstate functional connectivity (µFC) networks in which each µFC network is associated with a distinguished connectivity pattern of recurrent neuronal activity.The introduced approach is based on a multivariate Gaussian hidden Markov model (MGHMM) to decompose the sensor-space stochastic multi-subject event-related potential (ERP) into quasi-stable EEG microstates. Raw trial segments whose time windows belong to a corresponding segmented EEG microstate are then concatenated for measuring their µFC using the time-averaged phase-locking value. Illustration of this method is evaluated with synthetic data for which ground-truth microstate dynamics are known. Furthermore, we apply the method to identify EEG microstates and corresponding µFC networks in publicly available EEG data measured from visual cognitive tasks. Finally, we compare the MGHMM method with conventional dynamic FC (dFC) approaches using clustering-based K-means and time sliding windows, which conversely segregate the macrostate FC matrices across times into 'FC-states'.By using the MGHMM approach, we reveal: (1) EEG microstates, (2) µFC networks, (3) the associations of EEG microstate networks and their corresponding µFC networks dynamically modulated in publicly available EEG cognitive tasks, and (4) compared dFC performances between our proposed µFC approaches and 'FC-states' segmented by clustering-based K-means and time sliding windows.Evidence of significant improvements of microstate correlations (p -value < 0.05) and improved tendency of FC distinction (p -value = 0.064) over reported methods with simulated and realistic data will make this approach a preferred methodology to study dynamic brain networks and guarantee its use for further clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cool完成签到,获得积分10
1秒前
罗是一完成签到,获得积分10
1秒前
2秒前
2秒前
Lucas应助jhc采纳,获得10
3秒前
3秒前
shadow发布了新的文献求助10
4秒前
Demon发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
gigi发布了新的文献求助10
7秒前
7秒前
凌晨洋发布了新的文献求助10
8秒前
lalala发布了新的文献求助10
8秒前
无情的聋五关注了科研通微信公众号
8秒前
王旭智完成签到,获得积分10
9秒前
月yue发布了新的文献求助10
10秒前
深情安青应助shadow采纳,获得10
11秒前
12秒前
秋云完成签到 ,获得积分10
14秒前
Stove发布了新的文献求助10
15秒前
凌晨洋完成签到,获得积分10
15秒前
16秒前
科研通AI2S应助草木采纳,获得10
19秒前
21秒前
芒果大菠萝完成签到,获得积分10
24秒前
万能图书馆应助诗图采纳,获得10
24秒前
zyz完成签到,获得积分20
25秒前
27秒前
zzzhujp完成签到,获得积分10
27秒前
Lmj发布了新的文献求助10
28秒前
修仙应助齐安客采纳,获得10
28秒前
28秒前
29秒前
lvzhigang发布了新的文献求助10
30秒前
lm发布了新的文献求助30
31秒前
Jalynn2044发布了新的文献求助30
32秒前
zwenng发布了新的文献求助10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237