Microstate functional connectivity in EEG cognitive tasks revealed by a multivariate Gaussian hidden Markov model with phase locking value

地方政府 多元统计 隐马尔可夫模型 计算机科学 脑电图 认知 马尔可夫链 高斯分布 功能连接 价值(数学) 人工智能 认知心理学 模式识别(心理学) 语音识别 心理学 机器学习 神经科学 物理 量子力学
作者
Nguyen Thanh Duc,Boreom Lee
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (2): 026033-026033 被引量:24
标识
DOI:10.1088/1741-2552/ab0169
摘要

Tracking the spatiotemporal fast (~100 ms) transient networks remains challenging due to a limited understanding of neural activity dynamics as well as a lack of relevant sophisticated methodologies. In this study, we introduce a novel approach to identify simultaneously distinct EEG microstates and their corresponding microstate functional connectivity (µFC) networks in which each µFC network is associated with a distinguished connectivity pattern of recurrent neuronal activity.The introduced approach is based on a multivariate Gaussian hidden Markov model (MGHMM) to decompose the sensor-space stochastic multi-subject event-related potential (ERP) into quasi-stable EEG microstates. Raw trial segments whose time windows belong to a corresponding segmented EEG microstate are then concatenated for measuring their µFC using the time-averaged phase-locking value. Illustration of this method is evaluated with synthetic data for which ground-truth microstate dynamics are known. Furthermore, we apply the method to identify EEG microstates and corresponding µFC networks in publicly available EEG data measured from visual cognitive tasks. Finally, we compare the MGHMM method with conventional dynamic FC (dFC) approaches using clustering-based K-means and time sliding windows, which conversely segregate the macrostate FC matrices across times into 'FC-states'.By using the MGHMM approach, we reveal: (1) EEG microstates, (2) µFC networks, (3) the associations of EEG microstate networks and their corresponding µFC networks dynamically modulated in publicly available EEG cognitive tasks, and (4) compared dFC performances between our proposed µFC approaches and 'FC-states' segmented by clustering-based K-means and time sliding windows.Evidence of significant improvements of microstate correlations (p -value < 0.05) and improved tendency of FC distinction (p -value = 0.064) over reported methods with simulated and realistic data will make this approach a preferred methodology to study dynamic brain networks and guarantee its use for further clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助CC采纳,获得10
1秒前
JamesPei应助Chelry采纳,获得10
1秒前
3秒前
FashionBoy应助jdjd采纳,获得10
4秒前
4秒前
CipherSage应助憨憨采纳,获得10
5秒前
细腻老四发布了新的文献求助10
5秒前
5秒前
小二郎应助闾丘剑封采纳,获得10
5秒前
孤独的问凝完成签到,获得积分10
6秒前
crazy发布了新的文献求助10
8秒前
小蘑菇应助w_采纳,获得10
8秒前
小瓜在吗发布了新的文献求助10
9秒前
zpeng完成签到,获得积分10
10秒前
LI发布了新的文献求助10
12秒前
汉堡包应助崔钰采纳,获得10
13秒前
丘比特应助q792309106采纳,获得10
13秒前
14秒前
zhuan完成签到,获得积分10
14秒前
彭于晏应助慧敏采纳,获得10
14秒前
ewind完成签到 ,获得积分10
16秒前
fanyueyue应助qq采纳,获得10
18秒前
CC完成签到,获得积分10
19秒前
19秒前
闪闪寒云完成签到 ,获得积分10
21秒前
22秒前
24秒前
星野Nana_完成签到,获得积分10
25秒前
洪洪完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
28秒前
28秒前
Ghost发布了新的文献求助30
28秒前
星野Nana_发布了新的文献求助10
28秒前
30秒前
30秒前
寒冷擎汉完成签到,获得积分10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425