Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network

自编码 人工智能 机器学习 计算机科学 人工神经网络 细胞色素P450 深度学习 化学 计算生物学 生物 生物化学
作者
Xiang Li,Youjun Xu,Luhua Lai,Jianfeng Pei
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:15 (10): 4336-4345 被引量:102
标识
DOI:10.1021/acs.molpharmaceut.8b00110
摘要

Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP450) inhibition is an important consideration in drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP450 isoform. In this study, we developed a multitask model for concurrent inhibition prediction of five major CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4. The model was built by training a multitask autoencoder deep neural network (DNN) on a large dataset containing more than 13 000 compounds, extracted from the PubChem BioAssay Database. We demonstrate that the multitask model gave better prediction results than that of single-task models, previous reported classifiers, and traditional machine learning methods on an average of five prediction tasks. Our multitask DNN model gave average prediction accuracies of 86.4% for the 10-fold cross-validation and 88.7% for the external test datasets. In addition, we built linear regression models to quantify how the other tasks contributed to the prediction difference of a given task between single-task and multitask models, and we explained under what conditions the multitask model will outperform the single-task model, which suggested how to use multitask DNN models more effectively. We applied sensitivity analysis to extract useful knowledge about CYP450 inhibition, which may shed light on the structural features of these isoforms and give hints about how to avoid side effects during drug development. Our models are freely available at http://repharma.pku.edu.cn/deepcyp/home.php or http://www.pkumdl.cn/deepcyp/home.php .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
贾哲宇发布了新的文献求助30
2秒前
善学以致用应助fantexi113采纳,获得10
3秒前
3秒前
Evelyn完成签到,获得积分10
3秒前
4秒前
hhh123完成签到,获得积分10
6秒前
大旭完成签到 ,获得积分10
6秒前
SCI的芷蝶发布了新的文献求助10
6秒前
化工牛马发布了新的文献求助10
7秒前
9秒前
容cc发布了新的文献求助30
10秒前
可爱的函函应助leme采纳,获得10
12秒前
练习者发布了新的文献求助20
12秒前
13秒前
13秒前
15秒前
beauty_bear完成签到,获得积分10
16秒前
16秒前
scainiao完成签到,获得积分10
16秒前
17秒前
18秒前
乐乐应助zsfzuiishuai采纳,获得10
18秒前
孙千凝完成签到,获得积分10
19秒前
Jack完成签到 ,获得积分0
19秒前
Eason发布了新的文献求助30
19秒前
20秒前
20秒前
gsx应助老实的栾采纳,获得10
20秒前
Naturie完成签到,获得积分20
21秒前
滴滴滴完成签到,获得积分10
21秒前
22秒前
ahai完成签到 ,获得积分10
23秒前
要减肥的鹰完成签到 ,获得积分20
23秒前
练习者完成签到,获得积分10
24秒前
leme发布了新的文献求助10
25秒前
27秒前
27秒前
发酒疯很方便吃完成签到,获得积分10
27秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266734
求助须知:如何正确求助?哪些是违规求助? 2906468
关于积分的说明 8337945
捐赠科研通 2576783
什么是DOI,文献DOI怎么找? 1400727
科研通“疑难数据库(出版商)”最低求助积分说明 654911
邀请新用户注册赠送积分活动 633802