Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111111完成签到,获得积分10
刚刚
刚刚
NexusExplorer应助dff采纳,获得10
刚刚
阿仔完成签到,获得积分10
刚刚
1秒前
1秒前
iiiiiuy发布了新的文献求助10
2秒前
zr完成签到,获得积分10
2秒前
科研通AI6应助甜兮采纳,获得10
2秒前
li发布了新的文献求助10
2秒前
3秒前
希望天下0贩的0应助zv采纳,获得10
3秒前
Healer完成签到,获得积分10
3秒前
MICA关注了科研通微信公众号
3秒前
3秒前
bkagyin应助望空采纳,获得10
4秒前
高强发布了新的文献求助20
4秒前
ytzhang0587给花花的求助进行了留言
5秒前
超帅的靖完成签到,获得积分20
5秒前
陈杰发布了新的文献求助10
5秒前
5秒前
天123发布了新的文献求助10
6秒前
6秒前
大朋发布了新的文献求助10
6秒前
哆啦A梦完成签到,获得积分10
6秒前
7秒前
王肖儿发布了新的文献求助10
7秒前
壑舟完成签到,获得积分10
8秒前
茸茸茸完成签到,获得积分10
8秒前
范范778完成签到 ,获得积分10
9秒前
一切都好发布了新的文献求助30
9秒前
淡定井完成签到 ,获得积分10
9秒前
銭銭銭完成签到,获得积分20
9秒前
顺利鱼发布了新的文献求助30
9秒前
10秒前
zzzllove发布了新的文献求助10
10秒前
波波发布了新的文献求助10
11秒前
耶耶耶耶发布了新的文献求助10
11秒前
12秒前
Ava应助漫天采纳,获得10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726