Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助YXR采纳,获得10
1秒前
wangayting发布了新的文献求助10
1秒前
无语的代真完成签到,获得积分10
2秒前
2秒前
3秒前
滴滴嘟完成签到,获得积分10
4秒前
刘欢发布了新的文献求助10
5秒前
6秒前
薛洁洁完成签到,获得积分10
7秒前
领衔发布了新的文献求助10
8秒前
深情安青应助jiang采纳,获得10
8秒前
9秒前
10秒前
自觉莫茗完成签到 ,获得积分10
10秒前
会飞的鳄鱼完成签到,获得积分10
11秒前
蛋花肉圆汤完成签到,获得积分10
11秒前
CodeCraft应助一一采纳,获得10
11秒前
天天快乐应助wu采纳,获得150
12秒前
淡漠完成签到 ,获得积分10
13秒前
华仔应助石会发采纳,获得10
13秒前
Makta发布了新的文献求助10
13秒前
玄仙关注了科研通微信公众号
15秒前
16秒前
16秒前
领衔完成签到,获得积分10
17秒前
19秒前
而与白醋发布了新的文献求助50
19秒前
19秒前
还不错完成签到,获得积分10
20秒前
天天快乐应助张点心采纳,获得10
20秒前
20秒前
落日出逃完成签到,获得积分20
20秒前
Lucas应助111采纳,获得10
21秒前
乐乐应助科研废物采纳,获得10
21秒前
星星发布了新的文献求助10
22秒前
22秒前
小二郎应助biu我你开心吗采纳,获得10
22秒前
经百招发布了新的文献求助10
23秒前
zz发布了新的文献求助30
24秒前
YXR完成签到,获得积分10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140881
求助须知:如何正确求助?哪些是违规求助? 2791855
关于积分的说明 7800523
捐赠科研通 2448091
什么是DOI,文献DOI怎么找? 1302393
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601210