已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hello小鹿完成签到,获得积分10
刚刚
秋作完成签到 ,获得积分10
2秒前
nnn完成签到,获得积分10
3秒前
CodeCraft应助科研进化中采纳,获得10
4秒前
5秒前
风行完成签到,获得积分10
6秒前
mymEN完成签到 ,获得积分10
7秒前
JamesPei应助燕傲柏采纳,获得10
9秒前
胡添傲发布了新的文献求助10
10秒前
夏日香气发布了新的文献求助10
10秒前
ddm完成签到 ,获得积分10
13秒前
15秒前
科研通AI2S应助ying采纳,获得10
15秒前
張医铄完成签到,获得积分10
16秒前
YEM完成签到 ,获得积分10
16秒前
18秒前
Akim应助uerly采纳,获得10
18秒前
呐呐呐完成签到 ,获得积分10
18秒前
吕绪特发布了新的文献求助10
19秒前
19秒前
开心的野狼完成签到 ,获得积分10
21秒前
22秒前
无限凡雁发布了新的文献求助10
23秒前
英姑应助执着南琴采纳,获得10
23秒前
cyyyj发布了新的文献求助10
24秒前
Y0Y0完成签到 ,获得积分20
25秒前
水晶鞋完成签到 ,获得积分10
29秒前
打打应助jasminejasmine采纳,获得10
30秒前
柚子完成签到 ,获得积分10
30秒前
31秒前
英勇的红酒完成签到 ,获得积分10
31秒前
orangel完成签到,获得积分10
31秒前
酷波er应助胡添傲采纳,获得10
33秒前
33秒前
33秒前
34秒前
35秒前
bzlinhqu@126.com完成签到,获得积分10
35秒前
香蕉觅云应助落寞代桃采纳,获得10
36秒前
song完成签到 ,获得积分10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168