Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小路完成签到,获得积分10
刚刚
1秒前
愉快半烟发布了新的文献求助10
1秒前
科研1完成签到,获得积分20
2秒前
倩Q发布了新的文献求助10
3秒前
3秒前
3秒前
梅子黄时雨完成签到,获得积分10
4秒前
YL完成签到 ,获得积分0
4秒前
今后应助一一采纳,获得10
5秒前
芒果完成签到,获得积分10
5秒前
家园发布了新的文献求助30
6秒前
朴实夏旋完成签到,获得积分10
7秒前
7秒前
finger完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
善学以致用应助zhang采纳,获得10
10秒前
onestep完成签到,获得积分10
11秒前
Stranger发布了新的文献求助10
11秒前
11秒前
马子妍发布了新的文献求助10
14秒前
huaner完成签到,获得积分10
14秒前
大意的茈完成签到 ,获得积分10
14秒前
WFLLL发布了新的文献求助20
14秒前
家园完成签到,获得积分10
14秒前
跳跳鱼完成签到,获得积分10
14秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
完美世界应助一一采纳,获得10
19秒前
20秒前
fzzf发布了新的文献求助10
21秒前
熬夜猫完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
黄大仙完成签到,获得积分10
24秒前
丁莞完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488