Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富贵儿发布了新的文献求助10
2秒前
冯度翩翩完成签到,获得积分10
2秒前
sweetbearm应助健壮的涑采纳,获得10
2秒前
村里傻小子完成签到,获得积分20
2秒前
田様应助Khr1stINK采纳,获得10
3秒前
傲娇的凡旋应助小周采纳,获得10
4秒前
潇潇潇完成签到 ,获得积分10
4秒前
5秒前
英俊的铭应助XShu采纳,获得10
6秒前
Hello应助一只大肥猫采纳,获得10
7秒前
allyceacheng完成签到,获得积分10
7秒前
科研通AI5应助phd采纳,获得10
8秒前
8秒前
WTaMi完成签到 ,获得积分10
8秒前
zoe发布了新的文献求助10
8秒前
Owen应助无奈的酒窝采纳,获得10
9秒前
10秒前
12秒前
12秒前
12秒前
科研通AI5应助wangyanwxy采纳,获得10
13秒前
36456657应助豆dou采纳,获得10
13秒前
14秒前
14秒前
15秒前
buno应助jy采纳,获得10
16秒前
paparazzi221发布了新的文献求助10
17秒前
田生完成签到,获得积分10
17秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
17秒前
17秒前
爆米花应助towerman采纳,获得10
18秒前
羊笨笨完成签到 ,获得积分10
18秒前
19秒前
光亮芷天完成签到,获得积分10
19秒前
19秒前
20秒前
粗犷的问夏完成签到,获得积分10
21秒前
知行合一完成签到 ,获得积分10
22秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808