Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助小刘很怕忙采纳,获得10
1秒前
Hola完成签到,获得积分10
2秒前
MAYUE发布了新的文献求助10
2秒前
在水一方应助聪明帅哥采纳,获得10
2秒前
温茶完成签到,获得积分20
3秒前
persi完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
Francisz发布了新的文献求助10
5秒前
NN应助olekravchenko采纳,获得10
8秒前
8秒前
愉快的月光完成签到,获得积分10
9秒前
9秒前
9秒前
orixero应助赵英哲采纳,获得10
9秒前
10秒前
研友_Z3342Z完成签到,获得积分10
11秒前
11秒前
可爱的函函应助李沫沫采纳,获得20
13秒前
胡十一完成签到,获得积分20
15秒前
wanci应助zhang采纳,获得10
16秒前
NIHAO发布了新的文献求助10
16秒前
16秒前
动听衬衫发布了新的文献求助10
16秒前
大个应助佳佳爱学习采纳,获得30
17秒前
23333驳回了所所应助
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
changping应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
xxszyb应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
菜虚鲲发布了新的文献求助10
20秒前
赵淑敏发布了新的文献求助10
21秒前
22秒前
yiyi完成签到,获得积分10
22秒前
稳重迎荷完成签到 ,获得积分10
23秒前
毅毅子完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317367
求助须知:如何正确求助?哪些是违规求助? 4459844
关于积分的说明 13876619
捐赠科研通 4349993
什么是DOI,文献DOI怎么找? 2389069
邀请新用户注册赠送积分活动 1383256
关于科研通互助平台的介绍 1352647