Classification of multichannel surface-electromyography signals based on convolutional neural networks

肌电图 人工智能 卷积神经网络 信号(编程语言) 模式识别(心理学) 计算机科学 计算机视觉 语音识别 物理医学与康复 医学 程序设计语言
作者
Na Duan,Lizheng Liu,Xianjia Yu,Qingqing Li,Shih‐Ching Yeh
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:15: 201-206 被引量:55
标识
DOI:10.1016/j.jii.2018.09.001
摘要

Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the surface of human skeletons by means of poles, which can reflect the functional state of nerves and muscles under non-invasive conditions on a real-time basis. SEMG signals found a wide application in different fields including prosthesis control, sports medicine, rehabilitation medicine, and clinical diagnosis. However, how to efficiently exact features from SEMG signals to realize accurate recognition of action modes is a key issue for the practice of electromyography-controlled prostheses and to achieve precision of rehabilitation treatment. Deep learning reveals drastic changes in many fields of machine learning, including machine vision and voice recognition, over the past few years. We use convolutional neural networks (CNNs) to extract deep features from SEMG signals and classify actions. CNNs exhibit good translation invariance due to its characteristics of local connection and weight sharing. If SEMG signals were applied in the modeling of electromyography signal recognition, then the diversity of electromyography signal itself can be overcome using invariance in convolutions. Therefore, in this study, the spectrogram obtained by analyzing electromyography signals is proposed to be used as an image. Intensively used deep convolutional networks in the image were also adopted to conduct the gesture motion recognition of SEMG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科研通AI6应助拉屎很顺畅采纳,获得10
刚刚
1秒前
Darren发布了新的文献求助10
2秒前
2秒前
CipherSage应助高挑的梦芝采纳,获得10
3秒前
3秒前
科研通AI6应助小颖采纳,获得10
4秒前
小王发布了新的文献求助10
5秒前
5秒前
zzn发布了新的文献求助10
6秒前
7r完成签到,获得积分10
6秒前
张德帅发布了新的文献求助10
7秒前
天天快乐应助Serendipity采纳,获得10
8秒前
8秒前
TT完成签到,获得积分20
8秒前
PROPELLER发布了新的文献求助10
9秒前
一副药发布了新的文献求助10
9秒前
大个应助飘逸百褶裙采纳,获得10
9秒前
hust610wh发布了新的文献求助10
11秒前
今后应助灵活又幸福的胖采纳,获得10
12秒前
星空下的皮先生完成签到,获得积分10
12秒前
12秒前
满意的西牛完成签到,获得积分10
13秒前
无辜凝安完成签到,获得积分10
13秒前
ken131完成签到 ,获得积分0
14秒前
14秒前
活力怜雪完成签到 ,获得积分10
15秒前
BG完成签到,获得积分10
15秒前
Darren完成签到,获得积分10
15秒前
endlessloop发布了新的文献求助10
15秒前
17秒前
zzn完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
西塘古镇的独角兽完成签到,获得积分10
18秒前
19秒前
19秒前
无辜凝安发布了新的文献求助10
19秒前
20秒前
随便起个名完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890