双功能
催化作用
选择性
苯胺
化学
溶剂
有机化学
胺气处理
组合化学
作者
Xiaohong Chen,Kui Shen,Danni Ding,Junying Chen,Ting Fan,Rongfang Wu,Yingwei Li
标识
DOI:10.1021/acscatal.8b01834
摘要
The hydrogenation of nitroarenes is one of the most important strategies to produce the corresponding anilines and dicyclohexylamines, both of which are the fundamental raw materials in the synthesis of various pharmaceuticals and fine chemicals. Nevertheless, it is still a great challenge to develop a highly versatile and flexible catalytic system to selectively generate desired amines. Herein, we report the solvent-driven selectivity control over a bifunctional Pd/MIL-101 catalyst for the hydrogenation of nitrobenzene. An almost full selectivity of 99.9% to aniline or a surprising selectivity of 99.1% to dicyclohexylamine is achieved by using dimethylformamide (DMF, a polar solvent) or n-hexane (an apolar solvent) as the solvents, respectively. It is proposed that the polarity of solvents can effectively regulate the linkage between reactants/intermediates and Pd/MIL-101, affording controllable selectivities of aniline or dicyclohexylamine at will. In addition, the Lewis acid sites in Pd/MIL-101 can also effectively activate the aromatic ring and accelerate the cross-coupling reaction of amine. This solvent-driven catalytic system also exhibits good recyclability and compatibility for a wide substrate scope in both DMF and n-hexane, showing great promise for industrial applications. This study might open an avenue for the hydrogenation of nitroarenes to selectively produce anilines or dicyclohexylamines by simply regulating the solvent polarity over a bifunctional catalyst system.
科研通智能强力驱动
Strongly Powered by AbleSci AI