健康风险评估
风险评估
环境卫生
污染物
弹性(材料科学)
空气污染
环境科学
公共卫生
空气质量指数
人类健康
心理弹性
健康风险
作者
Junnan Xiong,Chongchong Ye,Tiancai Zhou,Weiming Cheng
标识
DOI:10.3390/ijerph16152796
摘要
Rapid urbanization and industrialization in developing countries have caused an increase in air pollutant concentrations, and this has attracted public concern due to the resulting harmful effects to health. Here we present, through the spatial-temporal characteristics of six criteria air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in Sichuan, a human health risk assessment framework conducted to evaluate the health risk of different age groups caused by ambient air pollutants. Public health resilience was evaluated with respect to the risk resulting from ambient air pollutants, and a spatial inequality analysis between the risk caused by ambient air pollutants and hospital density in Sichuan was performed based on the Lorenz curve and Gini coefficient. The results indicated that high concentrations of PM2.5 (47.7 μg m-3) and PM10 (75.9 μg m-3) were observed in the Sichuan Basin; these two air pollutants posed a high risk to infants. The high risk caused by PM2.5 was mainly distributed in Sichuan Basin (1.14) and that caused by PM10 was principally distributed in Zigong (1.01). Additionally, the infants in Aba and Ganzi had high health resilience to the risk caused by PM2.5 (3.89 and 4.79, respectively) and PM10 (3.28 and 2.77, respectively), which was explained by the low risk in these two regions. These regions and Sichuan had severe spatial inequality between the infant hazard quotient caused by PM2.5 (G = 0.518, G = 0.493, and G = 0.456, respectively) and hospital density. This spatial inequality was also caused by PM10 (G = 0.525, G = 0.526, and G = 0.466, respectively), which is mainly attributed to the imbalance between hospital distribution and risk caused by PM2.5 (PM10) in these two areas. Such research could provide a basis for the formulation of medical construction and future air pollution control measures in Sichuan.
科研通智能强力驱动
Strongly Powered by AbleSci AI