清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations

植被(病理学) 天蓬 采样(信号处理) 树冠 随机森林 森林资源清查
作者
Chad Babcock,Andrew O. Finley,Hans-Erik Andersen,Robert R. Pattison,Bruce D. Cook,Douglas C. Morton,Michael Alonzo,Ross Nelson,Timothy G. Gregoire,Liviu Theodor Ene,Terje Gobakken,Erik Næsset
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:212: 212-230 被引量:17
标识
DOI:10.1016/j.rse.2018.04.044
摘要

Abstract Lidar provides critical information on the three-dimensional structure of forests. However, collecting wall-to-wall laser altimetry data at regional and global scales is cost prohibitive. As a result, studies employing lidar for large area estimation typically collect data via strip sampling, leaving large swaths of the forest unmeasured by the instrument. The goal of this research was to develop and examine the performance of a coregionalization modeling approach for combining field measurements, strip samples of airborne lidar and Landsat-based remote sensing products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed modeling strategy facilitates mapping of AGB density across the domain. Additionally, the coregionalization framework allows for estimation of total AGB for arbitrary areal units within the study area—a key advance to support diverse management objectives in interior Alaska. This research focuses on characterization of prediction uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the framework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from point-level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed coregionalization models consistently outperformed their counterpart lidar-free models in terms of point-level predictive performance and total (mean) AGB precision. Additionally, including a Landsat-derived forest cover covariate further improved precision in regions with lower lidar sampling intensity. Findings also demonstrate that model-based approaches not explicitly accounting for residual spatial dependence can grossly underestimate uncertainty, resulting in falsely precise estimates of AGB. The inferential capabilities of AGB posterior predictive distribution (PPD) products extend beyond simply mapping AGB density. We show how PPD products can provide insight regarding drivers of AGB heterogeneity in boreal forests, including permafrost and fire, highlighting the range of potential applications for Bayesian geostatistical methods to integrate field, airborne and satellite data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嫁个养熊猫的完成签到 ,获得积分10
5秒前
三伏天完成签到,获得积分10
5秒前
咯咯咯完成签到 ,获得积分10
13秒前
暮迟途远完成签到,获得积分10
21秒前
1250241652完成签到,获得积分10
34秒前
怕孤独的访云完成签到 ,获得积分10
37秒前
vvvaee完成签到 ,获得积分10
49秒前
53秒前
sobergod完成签到 ,获得积分10
55秒前
自然涵易发布了新的文献求助10
57秒前
ss发布了新的文献求助10
1分钟前
英姑应助Z颖123采纳,获得10
1分钟前
武汉出血王完成签到,获得积分10
2分钟前
Gary完成签到 ,获得积分10
2分钟前
yinhe完成签到 ,获得积分10
2分钟前
General完成签到 ,获得积分10
3分钟前
3分钟前
打打应助甘楽采纳,获得10
3分钟前
fighting完成签到,获得积分10
3分钟前
fighting发布了新的文献求助10
3分钟前
3分钟前
甘楽发布了新的文献求助10
4分钟前
鬼见愁完成签到,获得积分10
4分钟前
甘楽完成签到,获得积分10
4分钟前
richardzhang1984完成签到 ,获得积分10
4分钟前
4分钟前
Z颖123发布了新的文献求助10
4分钟前
自然涵易完成签到,获得积分10
4分钟前
aniu完成签到,获得积分10
5分钟前
玄黄大世界完成签到,获得积分10
5分钟前
秋夜临完成签到,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
emxzemxz完成签到 ,获得积分10
5分钟前
widesky777完成签到 ,获得积分0
5分钟前
jlwang发布了新的文献求助10
6分钟前
naczx完成签到,获得积分10
6分钟前
风秋杨完成签到 ,获得积分10
6分钟前
亮总完成签到 ,获得积分10
6分钟前
sherry完成签到 ,获得积分10
6分钟前
潇洒的语蝶完成签到 ,获得积分10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146832
求助须知:如何正确求助?哪些是违规求助? 2798126
关于积分的说明 7826730
捐赠科研通 2454695
什么是DOI,文献DOI怎么找? 1306428
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565