训练集
生成对抗网络
数据集
计算机科学
人工智能
灵敏度(控制系统)
模式识别(心理学)
合成数据
计算机断层摄影术
图像合成
集合(抽象数据类型)
生成语法
图像(数学)
放射科
医学
电子工程
工程类
程序设计语言
作者
Maayan Frid-Adar,Eyal Klang,Michal Marianne Amitai,Jacob Goldberger,Hayit Greenspan
标识
DOI:10.1109/isbi.2018.8363576
摘要
In this paper, we present a data augmentation method that generates synthetic medical images using Generative Adversarial Networks (GANs). We propose a training scheme that first uses classical data augmentation to enlarge the training set and then further enlarges the data size and its diversity by applying GAN techniques for synthetic data augmentation. Our method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). The classification performance using only classic data augmentation yielded 78.6% sensitivity and 88.4% specificity. By adding the synthetic data augmentation the results significantly increased to 85.7% sensitivity and 92.4% specificity.
科研通智能强力驱动
Strongly Powered by AbleSci AI