Radiomics Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy: A Multicenter Study

医学 鼻咽癌 置信区间 接收机工作特性 无线电技术 队列 肿瘤科 放射治疗 内科学 人工智能 核医学 放射科 计算机科学
作者
Richard Du,Victor Lee,Hui Yuan,Ka-On Lam,Herbert Pang,Yù Chen,Edmund Y. Lam,Pek‐Lan Khong,Anne W.M. Lee,Dora L.�W. Kwong,Varut Vardhanabhuti
出处
期刊:Radiology [Radiological Society of North America]
卷期号:1 (4): e180075-e180075 被引量:44
标识
DOI:10.1148/ryai.2019180075
摘要

To examine the prognostic value of a machine learning model trained with pretreatment MRI radiomic features in the assessment of patients with nonmetastatic nasopharyngeal carcinoma (NPC) who are at risk for 3-year disease progression after intensity-modulated radiation therapy and to explain the radiomics features in the model.A total of 277 patients with nonmetastatic NPC admitted between March 2008 and December 2014 at two imaging centers were retrospectively reviewed. Patients were allocated to a discovery or validation cohort based on where they underwent MRI (discovery cohort, n = 217; validation cohort, n = 60). A total of 525 radiomics features extracted from contrast material-enhanced T1- or T2-weighted MRI studies and five clinical features were subjected to radiomic machine learning modeling to predict 3-year disease progression. Feature selection was performed by analyzing robustness to resampling, reproducibility between observers, and redundancy. Features for the final model were selected with Kaplan-Meier analysis and the log-rank test. A support vector machine was used as the classifier for the model. To interpret the pattern learned from the model, Shapley additive explanations (SHAP) was applied.The final model yielded an area under the receiver operating characteristic curve of 0.80 in both the discovery (95% bootstrap confidence interval: 0.80, 0.81) and independent validation (95% bootstrap confidence interval: 0.73, 0.89) cohorts. Analysis with SHAP revealed that tumor shape sphericity, first-order mean absolute deviation, T stage, and overall stage were important factors in 3-year disease progression.These results add to the growing evidence of the role of radiomics in the assessment of NPC. By using explanatory techniques, such as SHAP, the complex interaction of features learned by the model may be understood.© RSNA, 2019Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨的初露完成签到,获得积分20
刚刚
研友_Lw4kGn发布了新的文献求助10
1秒前
2秒前
2秒前
852应助pocky采纳,获得10
3秒前
科研通AI5应助愤怒的小之采纳,获得10
3秒前
recovery发布了新的文献求助30
4秒前
共享精神应助杨诚采纳,获得10
4秒前
Chu_JH完成签到,获得积分10
4秒前
5秒前
5秒前
tao完成签到,获得积分10
5秒前
8秒前
迟到翘课翘完成签到 ,获得积分10
8秒前
科研废物发布了新的文献求助10
10秒前
科研通AI6应助笨笨的初露采纳,获得10
10秒前
10秒前
万能图书馆应助lpf采纳,获得10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
武婧完成签到,获得积分10
13秒前
Cino发布了新的文献求助10
14秒前
张锐斌完成签到,获得积分10
14秒前
NexusExplorer应助朱旭采纳,获得10
14秒前
16秒前
科研通AI6应助青年才俊采纳,获得30
16秒前
16秒前
小丸子发布了新的文献求助10
16秒前
浮游应助缘6688采纳,获得10
17秒前
17秒前
17秒前
HYYY发布了新的文献求助10
18秒前
风趣惜霜完成签到,获得积分10
18秒前
上官若男应助小鲤鱼采纳,获得10
19秒前
默默懿轩完成签到,获得积分10
19秒前
果果发布了新的文献求助100
19秒前
科研通AI6应助甜的瓜采纳,获得10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002