Radiomics Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy: A Multicenter Study

医学 鼻咽癌 置信区间 接收机工作特性 无线电技术 队列 肿瘤科 放射治疗 内科学 人工智能 核医学 放射科 计算机科学
作者
Richard Du,Victor Lee,Hui Yuan,Ka-On Lam,Herbert Pang,Yù Chen,Edmund Y. Lam,Pek‐Lan Khong,Anne W.M. Lee,Dora L.�W. Kwong,Varut Vardhanabhuti
出处
期刊:Radiology [Radiological Society of North America]
卷期号:1 (4): e180075-e180075 被引量:44
标识
DOI:10.1148/ryai.2019180075
摘要

To examine the prognostic value of a machine learning model trained with pretreatment MRI radiomic features in the assessment of patients with nonmetastatic nasopharyngeal carcinoma (NPC) who are at risk for 3-year disease progression after intensity-modulated radiation therapy and to explain the radiomics features in the model.A total of 277 patients with nonmetastatic NPC admitted between March 2008 and December 2014 at two imaging centers were retrospectively reviewed. Patients were allocated to a discovery or validation cohort based on where they underwent MRI (discovery cohort, n = 217; validation cohort, n = 60). A total of 525 radiomics features extracted from contrast material-enhanced T1- or T2-weighted MRI studies and five clinical features were subjected to radiomic machine learning modeling to predict 3-year disease progression. Feature selection was performed by analyzing robustness to resampling, reproducibility between observers, and redundancy. Features for the final model were selected with Kaplan-Meier analysis and the log-rank test. A support vector machine was used as the classifier for the model. To interpret the pattern learned from the model, Shapley additive explanations (SHAP) was applied.The final model yielded an area under the receiver operating characteristic curve of 0.80 in both the discovery (95% bootstrap confidence interval: 0.80, 0.81) and independent validation (95% bootstrap confidence interval: 0.73, 0.89) cohorts. Analysis with SHAP revealed that tumor shape sphericity, first-order mean absolute deviation, T stage, and overall stage were important factors in 3-year disease progression.These results add to the growing evidence of the role of radiomics in the assessment of NPC. By using explanatory techniques, such as SHAP, the complex interaction of features learned by the model may be understood.© RSNA, 2019Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
轻松盼烟发布了新的文献求助10
1秒前
usora完成签到,获得积分10
2秒前
念想完成签到 ,获得积分10
2秒前
雪途发布了新的文献求助10
4秒前
ORANGE完成签到,获得积分10
5秒前
qxy完成签到 ,获得积分10
6秒前
liwayou发布了新的文献求助10
7秒前
8秒前
烟花应助国家栋梁采纳,获得10
10秒前
JamesPei应助eee采纳,获得10
12秒前
小小月完成签到 ,获得积分10
13秒前
李华发布了新的文献求助10
14秒前
英俊的小恐龙完成签到,获得积分10
14秒前
啊娴仔发布了新的文献求助10
15秒前
16秒前
16秒前
良言完成签到 ,获得积分10
19秒前
zzz发布了新的文献求助10
20秒前
赵悦如发布了新的文献求助10
21秒前
大个应助盒子采纳,获得10
21秒前
姚夏发布了新的文献求助10
21秒前
李华完成签到,获得积分10
24秒前
可爱的香菇完成签到 ,获得积分10
25秒前
大模型应助萌酱采纳,获得10
28秒前
30秒前
Rain发布了新的文献求助10
30秒前
30秒前
31秒前
外向的盼晴完成签到,获得积分10
31秒前
31秒前
爱学习小LI完成签到,获得积分20
31秒前
33秒前
盒子完成签到,获得积分10
33秒前
淡出发布了新的文献求助10
34秒前
34秒前
peanut发布了新的文献求助10
35秒前
36秒前
36秒前
盒子发布了新的文献求助10
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182