已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy: A Multicenter Study

医学 鼻咽癌 置信区间 接收机工作特性 无线电技术 队列 肿瘤科 放射治疗 内科学 人工智能 核医学 放射科 计算机科学
作者
Richard Du,Victor Lee,Hui Yuan,Ka-On Lam,Herbert Pang,Yù Chen,Edmund Y. Lam,Pek‐Lan Khong,Anne W.M. Lee,Dora L.�W. Kwong,Varut Vardhanabhuti
出处
期刊:Radiology [Radiological Society of North America]
卷期号:1 (4): e180075-e180075 被引量:44
标识
DOI:10.1148/ryai.2019180075
摘要

To examine the prognostic value of a machine learning model trained with pretreatment MRI radiomic features in the assessment of patients with nonmetastatic nasopharyngeal carcinoma (NPC) who are at risk for 3-year disease progression after intensity-modulated radiation therapy and to explain the radiomics features in the model.A total of 277 patients with nonmetastatic NPC admitted between March 2008 and December 2014 at two imaging centers were retrospectively reviewed. Patients were allocated to a discovery or validation cohort based on where they underwent MRI (discovery cohort, n = 217; validation cohort, n = 60). A total of 525 radiomics features extracted from contrast material-enhanced T1- or T2-weighted MRI studies and five clinical features were subjected to radiomic machine learning modeling to predict 3-year disease progression. Feature selection was performed by analyzing robustness to resampling, reproducibility between observers, and redundancy. Features for the final model were selected with Kaplan-Meier analysis and the log-rank test. A support vector machine was used as the classifier for the model. To interpret the pattern learned from the model, Shapley additive explanations (SHAP) was applied.The final model yielded an area under the receiver operating characteristic curve of 0.80 in both the discovery (95% bootstrap confidence interval: 0.80, 0.81) and independent validation (95% bootstrap confidence interval: 0.73, 0.89) cohorts. Analysis with SHAP revealed that tumor shape sphericity, first-order mean absolute deviation, T stage, and overall stage were important factors in 3-year disease progression.These results add to the growing evidence of the role of radiomics in the assessment of NPC. By using explanatory techniques, such as SHAP, the complex interaction of features learned by the model may be understood.© RSNA, 2019Supplemental material is available for this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰大海应助lx采纳,获得10
2秒前
penguin完成签到 ,获得积分10
4秒前
wish完成签到,获得积分10
7秒前
kalcspin完成签到 ,获得积分10
8秒前
科目三应助hryspa采纳,获得10
9秒前
CHBW发布了新的文献求助10
10秒前
衣裳薄完成签到,获得积分10
11秒前
13秒前
lx完成签到,获得积分10
14秒前
白华苍松完成签到,获得积分10
14秒前
16秒前
003完成签到,获得积分10
17秒前
MrFANG完成签到,获得积分10
17秒前
123发布了新的文献求助10
17秒前
科研通AI6应助CHBW采纳,获得10
21秒前
我爱行楷完成签到,获得积分10
23秒前
祁风完成签到 ,获得积分10
24秒前
24秒前
123完成签到,获得积分10
24秒前
貔貅完成签到 ,获得积分10
26秒前
云飞扬完成签到 ,获得积分10
28秒前
思源应助小启采纳,获得10
28秒前
白华苍松发布了新的文献求助10
30秒前
细心青雪完成签到 ,获得积分10
33秒前
Pluto完成签到,获得积分20
35秒前
戴衡霞完成签到,获得积分10
36秒前
TsuKe完成签到,获得积分10
37秒前
zhy发布了新的文献求助10
37秒前
40秒前
香丿完成签到 ,获得积分10
41秒前
小白加油完成签到 ,获得积分10
43秒前
HDD发布了新的文献求助10
43秒前
捉不到猫的蠢鱼完成签到,获得积分20
44秒前
邦有道发布了新的文献求助10
45秒前
斯文败类应助linggggg采纳,获得10
46秒前
46秒前
Pluto发布了新的文献求助10
48秒前
微笑的尔珍完成签到 ,获得积分10
48秒前
Lori完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564750
求助须知:如何正确求助?哪些是违规求助? 4649438
关于积分的说明 14688867
捐赠科研通 4591420
什么是DOI,文献DOI怎么找? 2519123
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846