Radiomics Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy: A Multicenter Study

医学 鼻咽癌 置信区间 接收机工作特性 无线电技术 队列 肿瘤科 放射治疗 内科学 人工智能 核医学 放射科 计算机科学
作者
Richard Du,Victor Lee,Hui Yuan,Ka-On Lam,Herbert Pang,Yù Chen,Edmund Y. Lam,Pek‐Lan Khong,Anne W.M. Lee,Dora L.�W. Kwong,Varut Vardhanabhuti
出处
期刊:Radiology [Radiological Society of North America]
卷期号:1 (4): e180075-e180075 被引量:44
标识
DOI:10.1148/ryai.2019180075
摘要

To examine the prognostic value of a machine learning model trained with pretreatment MRI radiomic features in the assessment of patients with nonmetastatic nasopharyngeal carcinoma (NPC) who are at risk for 3-year disease progression after intensity-modulated radiation therapy and to explain the radiomics features in the model.A total of 277 patients with nonmetastatic NPC admitted between March 2008 and December 2014 at two imaging centers were retrospectively reviewed. Patients were allocated to a discovery or validation cohort based on where they underwent MRI (discovery cohort, n = 217; validation cohort, n = 60). A total of 525 radiomics features extracted from contrast material-enhanced T1- or T2-weighted MRI studies and five clinical features were subjected to radiomic machine learning modeling to predict 3-year disease progression. Feature selection was performed by analyzing robustness to resampling, reproducibility between observers, and redundancy. Features for the final model were selected with Kaplan-Meier analysis and the log-rank test. A support vector machine was used as the classifier for the model. To interpret the pattern learned from the model, Shapley additive explanations (SHAP) was applied.The final model yielded an area under the receiver operating characteristic curve of 0.80 in both the discovery (95% bootstrap confidence interval: 0.80, 0.81) and independent validation (95% bootstrap confidence interval: 0.73, 0.89) cohorts. Analysis with SHAP revealed that tumor shape sphericity, first-order mean absolute deviation, T stage, and overall stage were important factors in 3-year disease progression.These results add to the growing evidence of the role of radiomics in the assessment of NPC. By using explanatory techniques, such as SHAP, the complex interaction of features learned by the model may be understood.© RSNA, 2019Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茉莉发布了新的文献求助10
刚刚
杨枝甘露樱桃完成签到,获得积分10
刚刚
搜集达人应助小张爱科研采纳,获得10
1秒前
2秒前
2秒前
2秒前
肘子发布了新的文献求助10
2秒前
3秒前
李健的小迷弟应助yan123采纳,获得10
4秒前
4秒前
yy完成签到,获得积分10
7秒前
研友_8KXkJL完成签到 ,获得积分10
7秒前
7秒前
8秒前
神勇麦片发布了新的文献求助10
8秒前
爆米花应助成就的馒头采纳,获得10
8秒前
斯文败类应助酷酷河马采纳,获得10
10秒前
fxfcpu完成签到,获得积分10
11秒前
慕青应助贤惠的靖易采纳,获得10
11秒前
清风发布了新的文献求助10
12秒前
糖炒栗子完成签到,获得积分10
12秒前
迷路的沛芹完成签到 ,获得积分10
13秒前
15秒前
18秒前
18秒前
无花果应助Enma采纳,获得10
19秒前
半烟发布了新的文献求助10
19秒前
19秒前
yan123发布了新的文献求助10
20秒前
hgf发布了新的文献求助10
23秒前
kk123发布了新的文献求助10
23秒前
菲菲鱼丸完成签到,获得积分10
24秒前
jxn发布了新的文献求助10
24秒前
YI发布了新的文献求助10
25秒前
清风完成签到,获得积分10
26秒前
27秒前
kingripple完成签到,获得积分10
28秒前
香蕉以菱完成签到 ,获得积分10
29秒前
科研通AI2S应助刘肉干采纳,获得10
29秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141296
求助须知:如何正确求助?哪些是违规求助? 2792352
关于积分的说明 7802183
捐赠科研通 2448490
什么是DOI,文献DOI怎么找? 1302608
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237