Biophysical Modeling of Large-Scale Brain Dynamics and Applications for Computational Psychiatry

比例(比率) 神经科学 心理学 多尺度建模 认知科学 人工智能 人工神经网络 计算神经科学
作者
John D. Murray,Murat Demirtas,Alan Anticevic
出处
期刊:Biological Psychiatry: Cognitive Neuroscience and Neuroimaging [Elsevier BV]
卷期号:3 (9): 777-787 被引量:22
标识
DOI:10.1016/j.bpsc.2018.07.004
摘要

Noninvasive neuroimaging has revolutionized the study of the organization of the human brain and how its structure and function are altered in psychiatric disorders. A critical explanatory gap lies in our mechanistic understanding of how systems-level neuroimaging biomarkers emerge from underlying synaptic-level perturbations associated with a disease state. We describe an emerging computational psychiatry approach leveraging biophysically based computational models of large-scale brain dynamics and their potential integration with clinical and pharmacological neuroimaging. In particular, we focus on neural circuit models, which describe how patterns of functional connectivity observed in resting-state functional magnetic resonance imaging emerge from neural dynamics shaped by inter-areal interactions through underlying structural connectivity defining long-range projections. We highlight the importance of local circuit physiological dynamics, in combination with structural connectivity, in shaping the emergent functional connectivity. Furthermore, heterogeneity of local circuit properties across brain areas, which impacts large-scale dynamics, may be critical for modeling whole-brain phenomena and alterations in psychiatric disorders and pharmacological manipulation. Finally, we discuss important directions for future model development and biophysical extensions, which will expand their utility to link clinical neuroimaging to neurobiological mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研牛马完成签到,获得积分10
2秒前
2秒前
4秒前
宁为沙发布了新的文献求助10
5秒前
简单十三完成签到,获得积分10
5秒前
沉默听芹完成签到,获得积分10
5秒前
深情安青应助fei采纳,获得10
6秒前
xdy完成签到 ,获得积分10
7秒前
初见完成签到,获得积分10
8秒前
踏雪飞鸿发布了新的文献求助10
9秒前
xiaowanzi发布了新的文献求助10
9秒前
mmmmmMM完成签到,获得积分10
9秒前
zhanzhanzhan完成签到,获得积分10
10秒前
jameslee04完成签到 ,获得积分10
10秒前
Sai完成签到 ,获得积分10
11秒前
TBI完成签到,获得积分10
11秒前
SciGPT应助完美的映秋采纳,获得10
12秒前
13秒前
宁为沙完成签到,获得积分10
13秒前
相信...就好完成签到 ,获得积分10
13秒前
在水一方应助居居子采纳,获得10
14秒前
15秒前
刘西西完成签到,获得积分10
15秒前
子车茗应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
云山万重应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
cdercder应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
俏皮的松鼠完成签到 ,获得积分10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
云山万重应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
子车茗应助科研通管家采纳,获得10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736852
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10020999
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749698