Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries

材料科学 阴极 导电体 阳极 离子 密度泛函理论 尖晶石 功率密度 电池(电) 离子键合 光电子学 纳米技术 电极 复合材料 物理化学 电气工程 功率(物理) 热力学 计算化学 工程类 化学 冶金 物理 量子力学
作者
Fu‐Da Yu,Lan‐Fang Que,Cheng‐Yan Xu,Zhen‐Bo Wang,Gang Sun,Jenq‐Gong Duh
出处
期刊:Nano Energy [Elsevier]
卷期号:59: 527-536 被引量:85
标识
DOI:10.1016/j.nanoen.2019.03.012
摘要

Li-rich (LR) layered oxide cathode for high-energy-density Li-ion batteries are receiving considerable attention. However, their intrinsic issues hinder the implementation of LR in simultaneously achieving higher energy and power densities. Herein, a dual-conductive surface control strategy is proposed. This surface layer contains an electronic conductive carbon nanotube (CNT) skeleton and an ionic conductive heteroepitaxial spinel structure, which endows the LR with the light-weight and self-standing characteristic. As evidenced by prolonged electrochemical and structural evolution, this surface layer can reduce polarization, restrain structural distortion and facilitate fast electronic/ionic diffusion. Density functional theory (DFT) calculations demonstrate a higher electron conductivity with a narrower band gap across the CNT/LR interface than that of pure LR, and reveal a highly connective Li+ percolation network and reduced Li+ migration energies for the layered-spinel heterogeneous interface. The designed LR cathode presents a high energy density (1077 Wh kg−1 at 0.1 C), excellent rate capability (195 mAh g−1 at 10 C) and superior cycle stability. When utilized as an additive-free cathode for high-voltage full-battery, impressive energy density (645 Wh kg−1 based on the cathode and anode) and ultra-long cycle life (maintaining 87% capacity after 400 cycles) can be achieved. These results and this dual-conductive surface control strategy provide an exciting perspective and avenue for the further development of high-performance electrode material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangrch6完成签到,获得积分10
1秒前
简单点发布了新的文献求助10
5秒前
小羊完成签到,获得积分10
5秒前
Yu完成签到,获得积分20
9秒前
9秒前
简单点完成签到,获得积分10
12秒前
汉堡包应助仔仔采纳,获得10
12秒前
yar应助luan采纳,获得10
13秒前
15秒前
热心市民小红花应助仔仔采纳,获得10
16秒前
Real完成签到,获得积分20
16秒前
领导范儿应助伊可采纳,获得10
17秒前
华仔应助Jaferi采纳,获得10
20秒前
YYHJT关注了科研通微信公众号
22秒前
王文帝完成签到,获得积分20
22秒前
Rashalin完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
伊可发布了新的文献求助10
29秒前
称心尔曼发布了新的文献求助10
29秒前
29秒前
大大完成签到,获得积分10
30秒前
甜美天磊发布了新的文献求助10
31秒前
miyavi应助Ijaz采纳,获得10
32秒前
huangqian完成签到,获得积分10
32秒前
清秀凌蝶发布了新的文献求助10
34秒前
Yhcir发布了新的文献求助10
34秒前
呆呆驳回了Orange应助
35秒前
36秒前
36秒前
泥泥完成签到,获得积分10
37秒前
麟钰完成签到,获得积分10
39秒前
ZZZZ完成签到,获得积分20
40秒前
kaia发布了新的文献求助10
42秒前
等于几都行完成签到 ,获得积分10
43秒前
Akim应助fengfeng采纳,获得10
45秒前
joplinJIA应助甜美天磊采纳,获得10
46秒前
烟花应助卷心菜采纳,获得30
47秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264351
求助须知:如何正确求助?哪些是违规求助? 2904456
关于积分的说明 8330298
捐赠科研通 2574681
什么是DOI,文献DOI怎么找? 1399322
科研通“疑难数据库(出版商)”最低求助积分说明 654476
邀请新用户注册赠送积分活动 633167