A Bayesian Model Averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations

逐步回归 统计 杉木 逻辑回归 贝叶斯概率 数学 后验概率 回归分析 选型 贝叶斯推理 联营 选择(遗传算法) 贝叶斯线性回归 计量经济学 林业 地理 计算机科学 生物 人工智能 植物
作者
Lele Lu,Hanchen Wang,Sophan Chhin,Aiguo Duan,Zhang Jian-guo,Xiongqing Zhang
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:440: 169-177 被引量:12
标识
DOI:10.1016/j.foreco.2019.03.003
摘要

Relationships between tree mortality and endogenous factors and climate factors have emerged as important concerns, and logistic stepwise regression is widely used for modeling the relationships. However, this method subsequently ignores both the variables not selected because of insignificance, and the model uncertainty due to the variable selection process. Bayesian Model Averaging (BMA) selects all possible models and uses the posterior probabilities of these models to perform all inferences and predictions. In this study, Bayesian Model Averaging (BMA) and logistic stepwise regression were used to analyze tree mortality in relation to competition, site index, and climatic factors in Chinese fir (Cunninghamia lanceolata (Lamb.) plantations established at five initial planting densities (A: 1667, B: 3333, C: 5000, D: 6667, and E: 10,000 trees/ha). Results showed that the posterior probability of the best model acquired by stepwise regression was less than that of the best model (highest posterior probability) acquired by BMA for pooling the data and density level D. Especially in the other planting densities, the model selected by stepwise regression was not in the BMA models. It indicates that the BMA method performed better than logistic stepwise regression, because BMA gave accurate posterior probability by taking into account the uncertainty of the model. In addition, the mortality increased with high competition and decreased with increasing temperature. The research has important implications for managing Chinese fir plantations under climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝圣者发布了新的文献求助10
5秒前
灰灰成长中完成签到,获得积分10
7秒前
哈哈哈发布了新的文献求助20
8秒前
赘婿应助朝圣者采纳,获得10
10秒前
靓丽安珊完成签到 ,获得积分10
15秒前
隐形的非笑完成签到 ,获得积分10
15秒前
耍酷的雪糕完成签到,获得积分10
17秒前
机智幻香完成签到 ,获得积分10
21秒前
早睡完成签到 ,获得积分10
23秒前
欢喜的怜菡完成签到,获得积分20
24秒前
dujinjun完成签到,获得积分10
27秒前
28秒前
糖炒李子完成签到,获得积分10
28秒前
28秒前
研究生完成签到 ,获得积分10
30秒前
科研顺利完成签到,获得积分10
31秒前
辣小扬发布了新的文献求助10
33秒前
林读书完成签到 ,获得积分10
33秒前
fred完成签到,获得积分10
36秒前
剑指天涯完成签到,获得积分10
39秒前
Jasper应助Rollei采纳,获得10
42秒前
momoni完成签到 ,获得积分10
43秒前
qaplay完成签到 ,获得积分0
44秒前
hua完成签到,获得积分10
46秒前
46秒前
YeeLeeLee完成签到,获得积分10
49秒前
嘻嘻哈哈发布了新的文献求助40
57秒前
李蝶儿完成签到 ,获得积分10
59秒前
李君然完成签到,获得积分10
1分钟前
棕色垂耳兔完成签到 ,获得积分10
1分钟前
gzslwddhjx完成签到,获得积分10
1分钟前
ZhaoCun完成签到,获得积分10
1分钟前
落寞迎梦完成签到 ,获得积分10
1分钟前
飞龙在天完成签到,获得积分0
1分钟前
pengyh8完成签到 ,获得积分10
1分钟前
牛马完成签到,获得积分10
1分钟前
1分钟前
Dsunflower完成签到 ,获得积分10
1分钟前
1分钟前
橙子完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208