已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Bayesian Model Averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations

逐步回归 统计 杉木 逻辑回归 贝叶斯概率 数学 后验概率 回归分析 选型 贝叶斯推理 联营 选择(遗传算法) 贝叶斯线性回归 计量经济学 林业 地理 计算机科学 生物 人工智能 植物
作者
Lele Lu,Hanchen Wang,Sophan Chhin,Aiguo Duan,Zhang Jian-guo,Xiongqing Zhang
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:440: 169-177 被引量:12
标识
DOI:10.1016/j.foreco.2019.03.003
摘要

Relationships between tree mortality and endogenous factors and climate factors have emerged as important concerns, and logistic stepwise regression is widely used for modeling the relationships. However, this method subsequently ignores both the variables not selected because of insignificance, and the model uncertainty due to the variable selection process. Bayesian Model Averaging (BMA) selects all possible models and uses the posterior probabilities of these models to perform all inferences and predictions. In this study, Bayesian Model Averaging (BMA) and logistic stepwise regression were used to analyze tree mortality in relation to competition, site index, and climatic factors in Chinese fir (Cunninghamia lanceolata (Lamb.) plantations established at five initial planting densities (A: 1667, B: 3333, C: 5000, D: 6667, and E: 10,000 trees/ha). Results showed that the posterior probability of the best model acquired by stepwise regression was less than that of the best model (highest posterior probability) acquired by BMA for pooling the data and density level D. Especially in the other planting densities, the model selected by stepwise regression was not in the BMA models. It indicates that the BMA method performed better than logistic stepwise regression, because BMA gave accurate posterior probability by taking into account the uncertainty of the model. In addition, the mortality increased with high competition and decreased with increasing temperature. The research has important implications for managing Chinese fir plantations under climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
互助遵法尚德应助jiangci采纳,获得10
2秒前
略略略发布了新的文献求助10
2秒前
3秒前
mysyne发布了新的文献求助10
7秒前
Zorn完成签到,获得积分10
9秒前
迷途发布了新的文献求助10
9秒前
13秒前
Aray完成签到,获得积分10
13秒前
air233完成签到,获得积分10
13秒前
Finley完成签到,获得积分10
13秒前
14秒前
GuaWang发布了新的文献求助20
14秒前
sword发布了新的文献求助10
17秒前
Akim应助颜沛文采纳,获得10
17秒前
18秒前
无尘发布了新的文献求助10
18秒前
乐乐应助迷途采纳,获得10
18秒前
小白菜完成签到,获得积分10
18秒前
传奇3应助祝一刀采纳,获得10
20秒前
20秒前
mysyne关注了科研通微信公众号
21秒前
Steven完成签到,获得积分10
23秒前
23秒前
英俊的铭应助哈哈哈哈采纳,获得10
23秒前
23秒前
24秒前
科研通AI2S应助无尘采纳,获得10
25秒前
26秒前
颜沛文发布了新的文献求助10
29秒前
小文殊完成签到 ,获得积分10
29秒前
小柠檬完成签到,获得积分10
30秒前
32秒前
晚安鸭箫晓完成签到 ,获得积分10
33秒前
上官若男应助hhc采纳,获得10
33秒前
野性的易梦完成签到 ,获得积分10
35秒前
猪蹄烧得不错完成签到,获得积分10
35秒前
小柠檬发布了新的文献求助20
37秒前
37秒前
科研通AI2S应助略略略采纳,获得10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146409
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825638
捐赠科研通 2454147
什么是DOI,文献DOI怎么找? 1306157
科研通“疑难数据库(出版商)”最低求助积分说明 627642
版权声明 601503