A Bayesian Model Averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations

逐步回归 统计 杉木 逻辑回归 贝叶斯概率 数学 后验概率 回归分析 选型 贝叶斯推理 联营 选择(遗传算法) 贝叶斯线性回归 计量经济学 林业 地理 计算机科学 生物 人工智能 植物
作者
Lele Lu,Hanchen Wang,Sophan Chhin,Aiguo Duan,Zhang Jian-guo,Xiongqing Zhang
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:440: 169-177 被引量:12
标识
DOI:10.1016/j.foreco.2019.03.003
摘要

Relationships between tree mortality and endogenous factors and climate factors have emerged as important concerns, and logistic stepwise regression is widely used for modeling the relationships. However, this method subsequently ignores both the variables not selected because of insignificance, and the model uncertainty due to the variable selection process. Bayesian Model Averaging (BMA) selects all possible models and uses the posterior probabilities of these models to perform all inferences and predictions. In this study, Bayesian Model Averaging (BMA) and logistic stepwise regression were used to analyze tree mortality in relation to competition, site index, and climatic factors in Chinese fir (Cunninghamia lanceolata (Lamb.) plantations established at five initial planting densities (A: 1667, B: 3333, C: 5000, D: 6667, and E: 10,000 trees/ha). Results showed that the posterior probability of the best model acquired by stepwise regression was less than that of the best model (highest posterior probability) acquired by BMA for pooling the data and density level D. Especially in the other planting densities, the model selected by stepwise regression was not in the BMA models. It indicates that the BMA method performed better than logistic stepwise regression, because BMA gave accurate posterior probability by taking into account the uncertainty of the model. In addition, the mortality increased with high competition and decreased with increasing temperature. The research has important implications for managing Chinese fir plantations under climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
xiaoqi666完成签到 ,获得积分10
3秒前
4秒前
科研通AI5应助shijie805采纳,获得10
6秒前
小远远发布了新的文献求助10
6秒前
阿辉完成签到 ,获得积分10
8秒前
华仔应助木木木采纳,获得10
8秒前
8秒前
爪爪完成签到,获得积分10
8秒前
k sir发布了新的文献求助10
11秒前
刘洪均完成签到,获得积分10
11秒前
虚幻灵薇完成签到 ,获得积分10
13秒前
Orange应助慢慢子采纳,获得10
13秒前
星辰大海应助杨烨华采纳,获得10
14秒前
16秒前
诚心的安珊完成签到 ,获得积分10
18秒前
木木木发布了新的文献求助10
19秒前
19秒前
十一玮完成签到,获得积分10
20秒前
暂时想不到昵称完成签到,获得积分10
21秒前
漫漫楚威风完成签到,获得积分10
22秒前
乐乐乐乐完成签到,获得积分10
23秒前
默存完成签到,获得积分10
24秒前
隐形曼青应助小四喜采纳,获得10
24秒前
24秒前
kryptonite发布了新的文献求助10
24秒前
26秒前
青仔仔完成签到,获得积分10
26秒前
可爱的函函应助木木木采纳,获得10
26秒前
默默地读文献应助k sir采纳,获得10
27秒前
在一完成签到,获得积分10
29秒前
杨烨华发布了新的文献求助10
31秒前
34秒前
要减肥的chao完成签到,获得积分10
35秒前
36秒前
福同学完成签到,获得积分10
37秒前
完美世界应助又晴采纳,获得10
37秒前
37秒前
Owen应助99采纳,获得10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093