A Bayesian Model Averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations

逐步回归 统计 杉木 逻辑回归 贝叶斯概率 数学 后验概率 回归分析 选型 贝叶斯推理 联营 选择(遗传算法) 贝叶斯线性回归 计量经济学 林业 地理 计算机科学 生物 人工智能 植物
作者
Lele Lu,Hanchen Wang,Sophan Chhin,Aiguo Duan,Zhang Jian-guo,Xiongqing Zhang
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:440: 169-177 被引量:12
标识
DOI:10.1016/j.foreco.2019.03.003
摘要

Relationships between tree mortality and endogenous factors and climate factors have emerged as important concerns, and logistic stepwise regression is widely used for modeling the relationships. However, this method subsequently ignores both the variables not selected because of insignificance, and the model uncertainty due to the variable selection process. Bayesian Model Averaging (BMA) selects all possible models and uses the posterior probabilities of these models to perform all inferences and predictions. In this study, Bayesian Model Averaging (BMA) and logistic stepwise regression were used to analyze tree mortality in relation to competition, site index, and climatic factors in Chinese fir (Cunninghamia lanceolata (Lamb.) plantations established at five initial planting densities (A: 1667, B: 3333, C: 5000, D: 6667, and E: 10,000 trees/ha). Results showed that the posterior probability of the best model acquired by stepwise regression was less than that of the best model (highest posterior probability) acquired by BMA for pooling the data and density level D. Especially in the other planting densities, the model selected by stepwise regression was not in the BMA models. It indicates that the BMA method performed better than logistic stepwise regression, because BMA gave accurate posterior probability by taking into account the uncertainty of the model. In addition, the mortality increased with high competition and decreased with increasing temperature. The research has important implications for managing Chinese fir plantations under climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助羽柒er采纳,获得10
1秒前
嘿嘿发布了新的文献求助10
1秒前
1秒前
1秒前
zcy完成签到,获得积分10
2秒前
2秒前
王媛发布了新的文献求助10
2秒前
刘启迪完成签到,获得积分10
2秒前
3秒前
3秒前
嗨Honey完成签到 ,获得积分10
4秒前
4秒前
HotKid应助dingdind采纳,获得10
5秒前
Jun完成签到 ,获得积分10
5秒前
12345完成签到,获得积分10
5秒前
憨先生发布了新的文献求助10
5秒前
6秒前
6秒前
欣喜的伟泽完成签到,获得积分10
6秒前
小冉不熬夜完成签到 ,获得积分10
6秒前
zhoududu发布了新的文献求助10
7秒前
刘肖发布了新的文献求助10
7秒前
李健的小迷弟应助橙子采纳,获得10
7秒前
东北饿霸发布了新的文献求助40
7秒前
小冯完成签到 ,获得积分10
8秒前
8秒前
9秒前
张兮远发布了新的文献求助10
10秒前
11秒前
汉堡包应助吃猫的鱼采纳,获得10
11秒前
赘婿应助狗子爱吃桃桃采纳,获得10
11秒前
EricaLee9812发布了新的文献求助10
12秒前
帅气鹭洋发布了新的文献求助20
13秒前
阿柒完成签到,获得积分10
13秒前
13秒前
玊尔吡咯烷酮完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
机智猴完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023566
求助须知:如何正确求助?哪些是违规求助? 3563544
关于积分的说明 11343185
捐赠科研通 3294981
什么是DOI,文献DOI怎么找? 1814896
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019