Sohyun Park,Jinju Song,Seyeon Kim,Balaji Sambandam,Vinod Mathew,Sung‐Jin Kim,Jeonggeun Jo,Seokhun Kim,Jaekook Kim
出处
期刊:Nano Research [Springer Nature] 日期:2019-03-07卷期号:12 (4): 911-917被引量:44
标识
DOI:10.1007/s12274-019-2322-y
摘要
In this study, a pseudo-layered Na super-ionic conductor of Na3V2(PO4)2F3 (NVPF)/C cathode for sodium-ion batteries is prepared successfully using a facile polyol refluxing process without any impurity phases. The X-ray diffraction and Rietveld refinement results confirm that NVPF possesses tetragonal NASICON-type lattice with a space group of P42/mnm. In this preparative method, polyol is utilized as a solvent as well as a carbon source. The presence of nanosized NVPF particles in the carbon network is confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The existence of carbon is analyzed by Raman scattering and elemental analysis. When applied as a Na-storage material in a potential window of 2.0–4.3 V, the electrode exhibits two flat voltage plateaus at 3.7 and 4.2 V with an electrochemically active V3+/V4+ redox couple. In addition, Na3V2(PO4)2F3/C composite achieved a retention capacity of ~ 88% even after 1,500 cycles at 15 C. Moreover, at high current densities of 30 and 50 C, Na3V2(PO4)2F3/C cathode retains the specific discharge capacities of 108.4 and 105.9 mAh·g–1, respectively, revealing the structural stability of the material prepared through a facile polyol refluxing method.