发光
锂(药物)
海水
水溶液
荧光
X射线光电子能谱
水溶液中的金属离子
萃取(化学)
材料科学
多孔性
金属有机骨架
金属
化学
无机化学
化学工程
有机化学
冶金
光电子学
工程类
吸附
物理化学
复合材料
物理
地质学
海洋学
医学
量子力学
内分泌学
作者
Nathan D. Rudd,Yanyao Liu,Kui Tan,Feng Chen,Yves J. Chabal,Jing Li
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2019-03-01
卷期号:7 (7): 6561-6568
被引量:28
标识
DOI:10.1021/acssuschemeng.8b05018
摘要
We have synthesized a stable luminescent metal–organic framework (LMOF) through modification of an established Zr-based structure. The three-dimensional porous network of LMOF-321 represents a step forward in the development of robust, dual-ligand Zr-MOFs. This material is based on Zr6-nodes, which underlie chemically and thermally stable frameworks. LMOF-321 exhibits notable durability in diverse types of water samples (deionized, acidic/basic, seawater). The porosity, luminescence, and specific functionality from LMOF-321 establishes itself as a fluorescent chemical sensor and adsorbent for aqueous analytes. Studies have been implemented to analyze interactions of LMOF-321 with Li+ and other metals commonly found in water. The fluorescence intensity from LMOF-321 is responsive to Li+ at a parts per billion level (3.3 ppb) and demonstrates high selectivity for Li+ over other light metals, with detection ratios of 6.2, 14.3, and 44.9 for Li+/Na+, Li+/Ca2+, and Li+/Mg2+, respectively. These performances were maintained in ion-doped deionized and seawater samples, highlighting the potential of LMOF-321 for field applications. The Li+ KSV value for LMOF-321 (6549 M–1) sets the standard for LMOF sensors. ICP-OES reveals the selective adsorption of Li+ over other light metals, consistent with fluorescence measurements. LMOF-321 has a maximum uptake capacity of 12.18 mg/g, on par with lithium extraction materials. The adsorption data was fitted using Langmuir adsorption model with a high correlation factor (>0.999). XPS and FTIR studies provide insight to help understand the interaction mechanism between Li+ and LMOF-321, focusing on the bis(sulfonyl)imide functionality in the pillaring coligand. No other MOFs have been utilized for both the detection and extraction of Li+, rendering this work one step further toward more efficient harvesting procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI