材料科学
阳极
电极
制作
复合数
碳纳米管
阴极
电池(电)
锂(药物)
储能
纳米技术
光电子学
石墨
复合材料
电气工程
化学
物理
内分泌学
病理
物理化学
功率(物理)
工程类
替代医学
医学
量子力学
作者
Sang‐Hoon Park,Paul J. King,Ruiyuan Tian,Conor S. Boland,João Coelho,Chuanfang Zhang,Patrick McBean,Niall McEvoy,Matthias P. Kremer,Dermot Daly,Jonathan N. Coleman,Valeria Nicolosi
出处
期刊:Nature Energy
[Springer Nature]
日期:2019-06-17
卷期号:4 (7): 560-567
被引量:327
标识
DOI:10.1038/s41560-019-0398-y
摘要
Increasing the energy storage capability of lithium-ion batteries necessitates maximization of their areal capacity. This requires thick electrodes performing at near-theoretical specific capacity. However, achievable electrode thicknesses are restricted by mechanical instabilities, with high-thickness performance limited by the attainable electrode conductivity. Here we show that forming a segregated network composite of carbon nanotubes with a range of lithium storage materials (for example, silicon, graphite and metal oxide particles) suppresses mechanical instabilities by toughening the composite, allowing the fabrication of high-performance electrodes with thicknesses of up to 800 μm. Such composite electrodes display conductivities up to 1 × 104 S m−1 and low charge-transfer resistances, allowing fast charge-delivery and enabling near-theoretical specific capacities, even for thick electrodes. The combination of high thickness and specific capacity leads to areal capacities of up to 45 and 30 mAh cm−2 for anodes and cathodes, respectively. Combining optimized composite anodes and cathodes yields full cells with state-of-the-art areal capacities (29 mAh cm−2) and specific/volumetric energies (480 Wh kg−1 and 1,600 Wh l−1). While thicker battery electrodes are in high demand to maximize energy density, mechanical instability is a major hurdle in their fabrication. Here the authors report that segregated carbon nanotube networks enable thick, high-capacity electrodes for a range of materials including Si and NMC.
科研通智能强力驱动
Strongly Powered by AbleSci AI