Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles

成核 化学物理 化学 耗散系统 电流(流体) 过饱和度 电极 气泡 分子动力学 纳米技术 机械 热力学 材料科学 计算化学 物理化学 物理 有机化学
作者
Yamila A. Perez Sirkin,Esteban D. Gadea,Damián A. Scherlis,Valeria Molinero
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (27): 10801-10811 被引量:112
标识
DOI:10.1021/jacs.9b04479
摘要

Gas evolving reactions are ubiquitous in the operation of electrochemical devices. Recent studies of individual gas bubbles on nanoelectrodes have resulted in unprecedented control and insights on their formation. The experiments, however, lack the spatial resolution to elucidate the molecular pathway of nucleation of nanobubbles and their stationary size and shape. Here we use molecular simulations with an algorithm that mimics the electrochemical formation of gas, to investigate the mechanisms of nucleation of gas bubbles on nanoelectrodes, and characterize their stationary states. The simulations reproduce the experimental currents in the induction and stationary stages, and indicate that surface nanobubbles nucleate through a classical mechanism. We identify three distinct regimes for bubble nucleation, depending on the binding free energy per area of bubble to the electrode, Δγbind. If Δγbind is negative, the nucleation is heterogeneous and the nanobubble remains bound to the electrode, resulting in a low-current stationary state. For very negative Δγ, the bubble fully wets the electrode, forming a one-layer-thick micropancake that nucleates without supersaturation. On the other hand, when Δγbind > 0 the nanobubble nucleates homogeneously close to the electrode, but never attaches to it. We conclude that all surface nanobubbles must nucleate heterogeneously. The simulations reveal that the size and contact angle of stationary nanobubbles increase with the reaction driving force, although their residual current is invariant. The myriad of driven nonequilibrium stationary states with the same rate of production of gas, but distinct bubble properties, suggests that these dissipative systems have attractors that control the stationary current.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助普通西瓜采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
布衣发布了新的文献求助10
1秒前
1秒前
可ke完成签到 ,获得积分10
1秒前
小样发布了新的文献求助10
1秒前
hebei应助开朗的鸵鸟采纳,获得10
2秒前
2秒前
梁岑晚发布了新的文献求助10
2秒前
2秒前
Sepvvvvirtue发布了新的文献求助10
2秒前
2秒前
3秒前
俏皮的安萱完成签到 ,获得积分10
3秒前
KKK完成签到,获得积分10
4秒前
4秒前
lemonyu发布了新的文献求助30
4秒前
4秒前
spc68应助摆烂的雨雨采纳,获得10
5秒前
脑洞疼应助LXl采纳,获得10
5秒前
6秒前
6秒前
kingnb发布了新的文献求助10
6秒前
俞晓发布了新的文献求助10
7秒前
7秒前
贵金属LiLi发布了新的文献求助10
7秒前
7秒前
花南星完成签到,获得积分10
7秒前
木木发布了新的文献求助10
7秒前
夏青完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Starvotary发布了新的文献求助20
8秒前
蒋莹萱完成签到 ,获得积分10
8秒前
8秒前
敬鱼发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389