A Deep Learning Based Automated Structural Defect Detection System for Sewer Pipelines

管道运输 计算机科学 人工智能 工程类 建筑工程 机械工程
作者
Srinath Shiv Kumar,Dulcy M. Abraham
出处
期刊:Computing in Civil Engineering 被引量:18
标识
DOI:10.1061/9780784482445.029
摘要

Automated interpretation of closed-circuit television (CCTV) inspection videos has the potential to improve the speed, accuracy, and consistency of sewer pipeline condition assessment. Previous approaches have focused on defect classification in images, with little focus on defect localization (i.e., calculating location of defects relative to the pipe). Recent studies have shown that deep-learning based object detection models can be used to classify and localize operational defects, such as roots and deposits; however, the detection of structural defects, such as pipe fractures is challenging, given their fine silhouettes in images. This paper presents a two-step defect detection framework that uses a 5-layered convolutional neural network (CNN) for classification followed by the you-only-look-once (YOLO) model for detection of pipe fractures. The framework was trained using 1,800 images and yielded a 0.71 average precision (AP) score in detecting fractures, when tested on 300 images. The proposed framework can also achieve a significant reduction in time taken to process CCTV videos. Ongoing research aims to validate the framework on videos from a variety of pipes and extend the framework to defect additional defect categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北鱼发布了新的文献求助10
1秒前
1秒前
隐形幻竹发布了新的文献求助30
3秒前
李子发布了新的文献求助10
6秒前
搜集达人应助蝶衣采纳,获得10
7秒前
8秒前
9秒前
9秒前
11秒前
Foxxxy发布了新的文献求助30
12秒前
14秒前
直率的画笔完成签到,获得积分10
16秒前
16秒前
情怀应助李子采纳,获得10
16秒前
Foxxxy完成签到,获得积分10
20秒前
21秒前
ZR14124完成签到,获得积分10
21秒前
21秒前
23秒前
SYLH应助mufcyang采纳,获得10
23秒前
wonwojo发布了新的文献求助10
24秒前
bing发布了新的文献求助10
25秒前
纯牛奶杀手完成签到,获得积分10
26秒前
Fons完成签到,获得积分20
27秒前
风清扬发布了新的文献求助10
28秒前
福祸相依完成签到,获得积分10
28秒前
22完成签到,获得积分10
29秒前
桑桑完成签到 ,获得积分10
29秒前
轻舟关注了科研通微信公众号
30秒前
我是老大应助苦哈哈采纳,获得10
31秒前
32秒前
快乐的小蘑菇完成签到,获得积分10
32秒前
wanci应助纯牛奶杀手采纳,获得10
33秒前
bing完成签到,获得积分10
35秒前
35秒前
35秒前
沉默的皮卡丘完成签到 ,获得积分10
36秒前
大漠谣完成签到,获得积分10
37秒前
轻松友容完成签到 ,获得积分10
37秒前
zcx发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152