Local maximum synchrosqueezing transform: An energy-concentrated time-frequency analysis tool

能量(信号处理) 信号(编程语言) 算法 计算机科学 时频分析 振幅 一致性(知识库) 信号处理 瞬时相位 人工智能 数学 计算机视觉 物理 统计 滤波器(信号处理) 电信 雷达 量子力学 程序设计语言
作者
Gang Yu,Zhonghua Wang,Ping Zhao,Zhen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:117: 537-552 被引量:93
标识
DOI:10.1016/j.ymssp.2018.08.006
摘要

Time-frequency (TF) analysis (TFA) is an effective tool to analyze time-varying signals. The reassignment method (RM) and synchrosqueezing transform (SST) are high-resolution TFA methods that have attracted much attention recently in the signal-processing field. However, the RM and SST methods suffer from some drawbacks, such as unavailable signal reconstruction and poor energy concentration that hinder their applications in real-world data analysis. To overcome these drawbacks, we propose a novel SST-based technique that can achieve more concentrated representations than RM and SST. Meanwhile, we prove that it allows for perfect signal reconstruction. Furthermore, the ridge detection method and synchroextracting operator are combined to form an adaptive mode decomposition algorithm. The numerical validation shows that the proposed method can be used to sensitively discover the amplitude-weak modes and effectively address signals with heavy noise. In the experimental validation, we first analyze the gravitational-wave (GW) signal. The analysis results show that the proposed method can provide a better time-varying description for the generation procedure of the GW signal. Moreover, the reconstructed signal has a high consistency with the general relativity proposed by Einstein. The experimental analysis on fault bearing shows that the proposed method can discover more detailed features that are helpful for diagnosing bearing faults. Comparisons with other TFA methods demonstrate the superiority and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白大猛给白大猛的求助进行了留言
1秒前
2秒前
资紫丝发布了新的文献求助20
3秒前
4秒前
淡定的海安完成签到,获得积分10
4秒前
桐桐应助顺科研采纳,获得10
5秒前
teamguichu发布了新的文献求助10
5秒前
5秒前
眼睛大花生完成签到,获得积分10
5秒前
Vancy发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
务实的伯云完成签到,获得积分10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
不配.应助科研通管家采纳,获得20
10秒前
岛err应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
小马甲应助jiujiu采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得30
10秒前
慕青应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得30
11秒前
11秒前
trinhluongth给麦迪的求助进行了留言
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794