Local maximum synchrosqueezing transform: An energy-concentrated time-frequency analysis tool

能量(信号处理) 信号(编程语言) 算法 计算机科学 时频分析 振幅 一致性(知识库) 信号处理 瞬时相位 人工智能 数学 计算机视觉 物理 统计 滤波器(信号处理) 程序设计语言 雷达 电信 量子力学
作者
Gang Yu,Zhonghua Wang,Ping Zhao,Zhen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:117: 537-552 被引量:93
标识
DOI:10.1016/j.ymssp.2018.08.006
摘要

Time-frequency (TF) analysis (TFA) is an effective tool to analyze time-varying signals. The reassignment method (RM) and synchrosqueezing transform (SST) are high-resolution TFA methods that have attracted much attention recently in the signal-processing field. However, the RM and SST methods suffer from some drawbacks, such as unavailable signal reconstruction and poor energy concentration that hinder their applications in real-world data analysis. To overcome these drawbacks, we propose a novel SST-based technique that can achieve more concentrated representations than RM and SST. Meanwhile, we prove that it allows for perfect signal reconstruction. Furthermore, the ridge detection method and synchroextracting operator are combined to form an adaptive mode decomposition algorithm. The numerical validation shows that the proposed method can be used to sensitively discover the amplitude-weak modes and effectively address signals with heavy noise. In the experimental validation, we first analyze the gravitational-wave (GW) signal. The analysis results show that the proposed method can provide a better time-varying description for the generation procedure of the GW signal. Moreover, the reconstructed signal has a high consistency with the general relativity proposed by Einstein. The experimental analysis on fault bearing shows that the proposed method can discover more detailed features that are helpful for diagnosing bearing faults. Comparisons with other TFA methods demonstrate the superiority and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
aslink完成签到,获得积分10
2秒前
Amon完成签到,获得积分10
2秒前
啊娴仔发布了新的文献求助10
2秒前
camellia发布了新的文献求助10
2秒前
万能图书馆应助狂野觅云采纳,获得10
2秒前
充电宝应助zino采纳,获得10
3秒前
3秒前
小可发布了新的文献求助10
3秒前
英姑应助酷酷的起眸采纳,获得10
4秒前
Blue_Pig发布了新的文献求助10
4秒前
科研小白完成签到,获得积分10
5秒前
sooya发布了新的文献求助20
6秒前
6秒前
tiddler完成签到,获得积分10
6秒前
科研通AI2S应助滴滴采纳,获得10
6秒前
wgx完成签到,获得积分20
6秒前
7秒前
爱静静应助Keep采纳,获得10
7秒前
7秒前
7秒前
小马甲应助韭菜采纳,获得10
8秒前
MADKAI发布了新的文献求助10
8秒前
机智的白猫完成签到,获得积分10
8秒前
李健的小迷弟应助xxx采纳,获得10
8秒前
杜杜完成签到,获得积分10
8秒前
NexusExplorer应助新的心跳采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
JamesPei应助小可采纳,获得10
10秒前
粗暴的醉卉完成签到,获得积分10
10秒前
10秒前
科研通AI5应助stt采纳,获得10
11秒前
sunzhiyu233发布了新的文献求助10
12秒前
12秒前
缓缓地安静关注了科研通微信公众号
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759