已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ideal spatial adaptation by wavelet shrinkage

数学 小波 理想(伦理) 收缩率 适应(眼睛) 统计 人工智能 计算机科学 认识论 心理学 哲学 神经科学
作者
David L. Donoho,Iain M. Johnstone
出处
期刊:Biometrika [Oxford University Press]
卷期号:81 (3): 425-455 被引量:7652
标识
DOI:10.1093/biomet/81.3.425
摘要

SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle offers dramatic advantages over traditional linear estimation by nonadaptive kernels; however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. We show that variable-knot spline fits and piecewise-polynomial fits, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality in multivariate normal decision theory which we call the oracle inequality shows that attained performance differs from ideal performance by at most a factor of approximately 2 log n, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
兔子发布了新的文献求助10
2秒前
3秒前
3秒前
于玕发布了新的文献求助10
6秒前
yy发布了新的文献求助10
7秒前
yydragen应助struggling采纳,获得70
9秒前
思源应助博修采纳,获得10
9秒前
9秒前
赘婿应助导师老八采纳,获得10
9秒前
雪白蚂蚁完成签到,获得积分20
11秒前
小蘑菇应助LINDY采纳,获得30
13秒前
Sensons完成签到,获得积分10
13秒前
LLX发布了新的文献求助10
14秒前
llnysl完成签到 ,获得积分10
15秒前
给好评发布了新的文献求助20
16秒前
Dyying发布了新的文献求助50
17秒前
19秒前
西瓜完成签到 ,获得积分10
19秒前
无私的含海完成签到,获得积分10
20秒前
22秒前
天天快乐应助威武的凡双采纳,获得10
23秒前
25秒前
博修发布了新的文献求助10
26秒前
蜀黍完成签到 ,获得积分10
26秒前
六初完成签到 ,获得积分10
26秒前
导师老八发布了新的文献求助10
26秒前
火星上紫山完成签到 ,获得积分10
27秒前
28秒前
ak发布了新的文献求助10
29秒前
30秒前
墨尘发布了新的文献求助30
31秒前
hwen1998完成签到 ,获得积分10
33秒前
华仔应助动生电动势采纳,获得30
34秒前
hanzhua132发布了新的文献求助10
35秒前
36秒前
66289完成签到 ,获得积分10
36秒前
40秒前
宝玉发布了新的文献求助10
41秒前
ning发布了新的文献求助10
47秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603