已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ideal spatial adaptation by wavelet shrinkage

数学 小波 理想(伦理) 收缩率 适应(眼睛) 统计 人工智能 计算机科学 认识论 心理学 哲学 神经科学
作者
David L. Donoho,Iain M. Johnstone
出处
期刊:Biometrika [Oxford University Press]
卷期号:81 (3): 425-455 被引量:7652
标识
DOI:10.1093/biomet/81.3.425
摘要

SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle offers dramatic advantages over traditional linear estimation by nonadaptive kernels; however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. We show that variable-knot spline fits and piecewise-polynomial fits, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality in multivariate normal decision theory which we call the oracle inequality shows that attained performance differs from ideal performance by at most a factor of approximately 2 log n, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kristine完成签到 ,获得积分10
1秒前
常绝山完成签到 ,获得积分10
2秒前
2秒前
NiuNiu发布了新的文献求助20
3秒前
chen完成签到,获得积分10
4秒前
meow完成签到 ,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
清爽老九应助科研通管家采纳,获得30
7秒前
情怀应助科研通管家采纳,获得10
7秒前
GingerF应助科研通管家采纳,获得50
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
加贝火火完成签到 ,获得积分10
7秒前
7秒前
清爽老九应助科研通管家采纳,获得30
7秒前
7秒前
kiko完成签到,获得积分20
9秒前
张章发布了新的文献求助10
9秒前
牛牛完成签到 ,获得积分10
10秒前
康谨完成签到 ,获得积分10
10秒前
无幻完成签到 ,获得积分10
15秒前
隐形曼青应助xjz采纳,获得10
16秒前
17秒前
18秒前
黑神白了完成签到 ,获得积分10
19秒前
鲜艳的采白应助mark707采纳,获得50
19秒前
团宝妞宝完成签到,获得积分10
21秒前
浮浮世世发布了新的文献求助10
22秒前
隐形曼青应助lf-leo采纳,获得10
23秒前
23秒前
我是老大应助joy采纳,获得10
24秒前
Xiao完成签到 ,获得积分10
25秒前
27秒前
Gzl完成签到 ,获得积分10
27秒前
29秒前
mark707完成签到,获得积分10
29秒前
laurina完成签到 ,获得积分10
29秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136552
求助须知:如何正确求助?哪些是违规求助? 4336682
关于积分的说明 13510228
捐赠科研通 4174745
什么是DOI,文献DOI怎么找? 2289040
邀请新用户注册赠送积分活动 1289739
关于科研通互助平台的介绍 1231058