亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ideal spatial adaptation by wavelet shrinkage

数学 小波 理想(伦理) 收缩率 适应(眼睛) 统计 人工智能 计算机科学 认识论 心理学 哲学 神经科学
作者
David L. Donoho,Iain M. Johnstone
出处
期刊:Biometrika [Oxford University Press]
卷期号:81 (3): 425-455 被引量:7652
标识
DOI:10.1093/biomet/81.3.425
摘要

SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle offers dramatic advantages over traditional linear estimation by nonadaptive kernels; however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. We show that variable-knot spline fits and piecewise-polynomial fits, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality in multivariate normal decision theory which we call the oracle inequality shows that attained performance differs from ideal performance by at most a factor of approximately 2 log n, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老广发布了新的文献求助10
5秒前
29秒前
wrl2023发布了新的文献求助10
35秒前
JamesPei应助科研通管家采纳,获得10
38秒前
38秒前
wrl2023完成签到,获得积分10
43秒前
老广发布了新的文献求助10
49秒前
55秒前
1分钟前
charih完成签到 ,获得积分10
2分钟前
xiaolang2004完成签到,获得积分10
2分钟前
2分钟前
2分钟前
LJL完成签到 ,获得积分10
2分钟前
3分钟前
luyao发布了新的文献求助10
3分钟前
YZChen完成签到,获得积分10
3分钟前
千早爱音完成签到,获得积分10
3分钟前
领导范儿应助可爱丹彤采纳,获得10
3分钟前
3分钟前
可爱丹彤发布了新的文献求助10
3分钟前
jin发布了新的文献求助10
3分钟前
4分钟前
4分钟前
boluohu发布了新的文献求助10
4分钟前
jin完成签到,获得积分10
4分钟前
情怀应助jin采纳,获得10
4分钟前
boluohu完成签到,获得积分10
4分钟前
冬日暖阳完成签到 ,获得积分10
4分钟前
威武灵阳完成签到,获得积分10
4分钟前
千早爱音应助科研通管家采纳,获得20
4分钟前
4分钟前
luyao完成签到,获得积分10
4分钟前
Gabriel发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
MchemG应助Gabriel采纳,获得10
5分钟前
5分钟前
bobo完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848652
捐赠科研通 4335991
什么是DOI,文献DOI怎么找? 2380709
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998