ON MUTUALLY UNBIASED BASES

相互无偏基 量子纠缠 数学 离散数学 希尔伯特空间 量子位元 量子 组合数学 纯数学 量子力学 物理
作者
Thomas Durt,Berthold‐Georg Englert,Ingemar Bengtsson,Karol Życzkowski
出处
期刊:International Journal of Quantum Information [World Scientific]
卷期号:08 (04): 535-640 被引量:661
标识
DOI:10.1142/s0219749910006502
摘要

Mutually unbiased bases for quantum degrees of freedom are central to all theoretical investigations and practical exploitations of complementary properties. Much is known about mutually unbiased bases, but there are also a fair number of important questions that have not been answered in full as yet. In particular, one can find maximal sets of N + 1 mutually unbiased bases in Hilbert spaces of prime-power dimension N = p M , with p prime and M a positive integer, and there is a continuum of mutually unbiased bases for a continuous degree of freedom, such as motion along a line. But not a single example of a maximal set is known if the dimension is another composite number (N = 6, 10, 12,…). In this review, we present a unified approach in which the basis states are labeled by numbers 0, 1, 2, …, N - 1 that are both elements of a Galois field and ordinary integers. This dual nature permits a compact systematic construction of maximal sets of mutually unbiased bases when they are known to exist but throws no light on the open existence problem in other cases. We show how to use the thus constructed mutually unbiased bases in quantum-informatics applications, including dense coding, teleportation, entanglement swapping, covariant cloning, and state tomography, all of which rely on an explicit set of maximally entangled states (generalizations of the familiar two–q-bit Bell states) that are related to the mutually unbiased bases. There is a link to the mathematics of finite affine planes. We also exploit the one-to-one correspondence between unbiased bases and the complex Hadamard matrices that turn the bases into each other. The ultimate hope, not yet fulfilled, is that open questions about mutually unbiased bases can be related to open questions about Hadamard matrices or affine planes, in particular the notorious existence problem for dimensions that are not a power of a prime. The Hadamard-matrix approach is instrumental in the very recent advance, surveyed here, of our understanding of the N = 6 situation. All evidence indicates that a maximal set of seven mutually unbiased bases does not exist — one can find no more than three pairwise unbiased bases — although there is currently no clear-cut demonstration of the case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭一鸣完成签到,获得积分10
1秒前
斯文败类应助kmkz采纳,获得30
2秒前
无花果应助乐乐乐采纳,获得10
2秒前
ZXB完成签到,获得积分10
3秒前
pluto应助薛枏采纳,获得20
4秒前
4秒前
5秒前
5秒前
李爱国应助科研的POWER采纳,获得10
6秒前
6秒前
NexusExplorer应助马上毕业采纳,获得10
7秒前
不会科研的混子完成签到 ,获得积分10
7秒前
神明发布了新的文献求助10
8秒前
饱满含玉完成签到,获得积分10
11秒前
blueskyzhi发布了新的文献求助10
11秒前
13秒前
Akim应助神明采纳,获得10
13秒前
摇铃唤白鹿完成签到 ,获得积分10
14秒前
15秒前
15秒前
傻傻的语海完成签到,获得积分10
16秒前
怡然凌兰发布了新的文献求助10
16秒前
科研通AI5应助JJ采纳,获得10
16秒前
Ki_Ayasato完成签到,获得积分10
16秒前
追梦远行人完成签到 ,获得积分10
16秒前
16秒前
吱哦周完成签到,获得积分10
16秒前
Matthew_G完成签到,获得积分10
17秒前
Lik给Lik的求助进行了留言
18秒前
19秒前
cs完成签到,获得积分10
20秒前
贺小刚发布了新的文献求助10
20秒前
科研的云完成签到,获得积分10
20秒前
cdercder应助小杨爱学习采纳,获得10
20秒前
叠镜发布了新的文献求助10
22秒前
Lucas应助Jie_huang采纳,获得10
22秒前
Ava应助细心的语蓉采纳,获得30
23秒前
23秒前
24秒前
马上毕业发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768063
求助须知:如何正确求助?哪些是违规求助? 3312866
关于积分的说明 10165092
捐赠科研通 3027920
什么是DOI,文献DOI怎么找? 1661768
邀请新用户注册赠送积分活动 794289
科研通“疑难数据库(出版商)”最低求助积分说明 756063