Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets

偏最小二乘回归 多元统计 统计 回归分析 多元分析 贝叶斯多元线性回归 回归 数学 分析化学(期刊) 化学 色谱法
作者
Mark E. Keating,Haq Nawaz,Franck Bonnier,Hugh J. Byrne
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (7): 2482-2492 被引量:36
标识
DOI:10.1039/c4an02167c
摘要

Raman spectroscopy is fast becoming a valuable analytical tool in a number of biomedical scenarios, most notably disease diagnostics. Importantly, the technique has also shown increasing promise in the assessment of drug interactions on cellular and subcellular levels, particularly when coupled with multivariate statistical analysis. However, with respect to both Raman spectroscopy and the associated statistical methodologies, an important consideration is the accuracy of these techniques and more specifically, the sensitivities which can be achieved, and ultimately the limits of detection of the various methods. The purpose of this study is thus the construction of a model simulated dataset with the aim of testing the accuracy and sensitivity of the partial least squares regression (PLSR) approach to spectral analysis. The basis of the dataset is the experimental spectral profiles of a previously reported Raman spectroscopic analysis of the interaction of the cancer chemotherapeutic agent cisplatin in an adenocarcinomic human alveolar basal epithelial cell-line, in vitro, and is thus reflective of actual experimental data. The simulated spectroscopic data are constructed by adding known perturbations which are independently linear in drug doses as well as cytological responses experimentally determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay. It is demonstrated that, through appropriate choice of dose range, PLSR against the respective targets can differentiate between the spectroscopic signatures of the direct chemical effect of the drug dose and the indirect cytological effect it produces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hxn完成签到,获得积分10
1秒前
奋斗尔安完成签到,获得积分10
1秒前
沙拉发布了新的文献求助10
2秒前
hajy完成签到 ,获得积分10
2秒前
单纯寒凝发布了新的文献求助10
2秒前
2秒前
junzilan发布了新的文献求助10
2秒前
田様应助卡卡采纳,获得10
3秒前
Zezezee发布了新的文献求助10
5秒前
复杂的问玉完成签到,获得积分20
6秒前
7秒前
7秒前
睡睡完成签到,获得积分10
7秒前
8秒前
9秒前
所所应助饕餮采纳,获得10
9秒前
平淡小凝发布了新的文献求助10
9秒前
nihaoxiaoai完成签到,获得积分10
10秒前
完美世界应助英俊的汉堡采纳,获得10
10秒前
爱静静应助hehe采纳,获得10
11秒前
九城发布了新的文献求助20
11秒前
斯文败类应助高君奇采纳,获得10
11秒前
小二郎应助特兰克斯采纳,获得10
11秒前
mojomars发布了新的文献求助10
11秒前
吃嘛嘛香完成签到,获得积分10
11秒前
wqy发布了新的文献求助10
12秒前
天天快乐应助新的心跳采纳,获得10
12秒前
Orange应助有益采纳,获得10
12秒前
14秒前
爆米花应助marinemiao采纳,获得10
14秒前
14秒前
招财不肥发布了新的文献求助10
15秒前
网安真难T_T完成签到,获得积分10
15秒前
大土豆子完成签到,获得积分10
16秒前
16秒前
甜甜醉波发布了新的文献求助10
17秒前
CodeCraft应助jy采纳,获得10
17秒前
领导范儿应助睡睡采纳,获得10
17秒前
哈哈完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808