Segmentation of intravascular ultrasound images: a knowledge-based approach

血管内超声 分割 管腔(解剖学) 超声波 医学 放射科 尸体痉挛 人工智能 图像分割 生物医学工程 计算机科学 计算机视觉 解剖 内科学
作者
Milan Sonka,Xiangmin Zhang,Maria Siebes,M.S. Bissing,S.C. DeJong,Stephen M. Collins,Charles R. McKay
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 719-732 被引量:236
标识
DOI:10.1109/42.476113
摘要

Intravascular ultrasound imaging of coronary arteries provides important information about coronary lumen, wall, and plaque characteristics. Quantitative studies of coronary atherosclerosis using intravascular ultrasound and manual identification of wall and plaque borders are limited by the need for observers with substantial experience and the tedious nature of manual border detection. We have developed a method for segmentation of intravascular ultrasound images that identifies the internal and external elastic laminae and the plaque-lumen interface. The border detection algorithm was evaluated in a set of 38 intravascular ultrasound images acquired from fresh cadaveric hearts using a 30 MHz imaging catheter. To assess the performance of our border detection method we compared five quantitative measures of arterial anatomy derived from computer-detected borders with measures derived from borders manually defined by expert observers. Computer-detected and observer-defined lumen areas correlated very well (r=0.96, y=1.02x+0.52), as did plaque areas (r=0.95, y=1.07x-0.48), and percent area stenosis (r=0.93, y=0.99x-1.34.) Computer-derived segmental plaque thickness measurements were highly accurate. Our knowledge-based intravascular ultrasound segmentation method shows substantial promise for the quantitative analysis of in vivo intravascular ultrasound image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aries完成签到,获得积分10
1秒前
1秒前
Pretrial完成签到 ,获得积分10
1秒前
Jocelyn7发布了新的文献求助10
2秒前
wmmm发布了新的文献求助10
2秒前
余笙发布了新的文献求助10
3秒前
充电宝应助冷傲迎梦采纳,获得10
3秒前
彭于晏应助qi采纳,获得30
3秒前
科研通AI2S应助shor0414采纳,获得10
3秒前
ponyy发布了新的文献求助30
4秒前
秋之月发布了新的文献求助10
5秒前
skier发布了新的文献求助10
6秒前
balabala完成签到,获得积分20
6秒前
隐形曼青应助kb采纳,获得10
7秒前
yanyan发布了新的文献求助10
9秒前
繁笙完成签到 ,获得积分10
9秒前
9秒前
无言完成签到 ,获得积分10
9秒前
NONO完成签到 ,获得积分10
10秒前
星辰大海应助TT采纳,获得10
10秒前
12秒前
康康完成签到,获得积分10
12秒前
Xv完成签到,获得积分0
12秒前
15秒前
15秒前
香蕉觅云应助zfzf0422采纳,获得10
15秒前
16秒前
16秒前
李健应助爱听歌的向日葵采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
烟花应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得80
17秒前
所所应助科研通管家采纳,获得20
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得30
18秒前
婷婷发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824