SOCRAnalyses: Implementation and Demonstration of a New Graphical Statistics Educational Toolkit

威尔科克森符号秩检验 计算机科学 列联表 统计假设检验 非参数统计 考试(生物学) 参数统计 统计 统计推断 线性模型 计算统计学 机器学习 数学 曼惠特尼U检验 生物 古生物学
作者
Annie Chu,Jenny Cui,Ivo D. Dinov
出处
期刊:Journal of Statistical Software [Foundation for Open Access Statistic]
卷期号:30 (3) 被引量:42
标识
DOI:10.18637/jss.v030.i03
摘要

The web-based, Java-written SOCR (Statistical Online Computational Resource) tools have been utilized in many undergraduate and graduate level statistics courses for seven years now (Dinov 2006; Dinov et al. 2008b). It has been proven that these resources can successfully improve students' learning (Dinov et al. 2008b). Being first published online in 2005, SOCR Analyses is a somewhat new component and it concentrate on data modeling for both parametric and non-parametric data analyses with graphical model diagnostics. One of the main purposes of SOCR Analyses is to facilitate statistical learning for high school and undergraduate students. As we have already implemented SOCR Distributions and Experiments, SOCR Analyses and Charts fulfill the rest of a standard statistics curricula. Currently, there are four core components of SOCR Analyses. Linear models included in SOCR Analyses are simple linear regression, multiple linear regression, one-way and two-way ANOVA. Tests for sample comparisons include t-test in the parametric category. Some examples of SOCR Analyses' in the non-parametric category are Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, Kolmogorov-Smirnoff test and Fligner-Killeen test. Hypothesis testing models include contingency table, Friedman's test and Fisher's exact test. The last component of Analyses is a utility for computing sample sizes for normal distribution. In this article, we present the design framework, computational implementation and the utilization of SOCR Analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zhihan采纳,获得10
2秒前
2秒前
xylxyl完成签到,获得积分10
2秒前
3秒前
ZBN完成签到,获得积分10
3秒前
222关闭了222文献求助
4秒前
chinh完成签到,获得积分10
4秒前
钮祜禄废废完成签到,获得积分10
4秒前
4秒前
曾经富完成签到,获得积分10
6秒前
酷酷海豚完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
青青完成签到 ,获得积分10
10秒前
Chan0501发布了新的文献求助10
10秒前
昭昭完成签到,获得积分10
11秒前
SCI发布了新的文献求助10
11秒前
卓然完成签到,获得积分10
11秒前
李来仪发布了新的文献求助10
12秒前
13秒前
菲菲呀完成签到,获得积分10
13秒前
Rrr发布了新的文献求助10
13秒前
15秒前
陌路完成签到,获得积分10
15秒前
善学以致用应助leon采纳,获得30
15秒前
16秒前
斯文败类应助嘻嘻采纳,获得10
16秒前
科研通AI5应助小只bb采纳,获得30
16秒前
yyyy发布了新的文献求助10
16秒前
2023AKY完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
彭于晏应助惠惠采纳,获得10
19秒前
风魂剑主完成签到,获得积分10
20秒前
yryzst9899发布了新的文献求助10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794