清脆的
反式激活crRNA
生物
CRISPR干扰
遗传学
果胶杆菌
Cas9
计算生物学
细菌
基因
作者
Corinna Richter,Peter C. Fineran
出处
期刊:Biochemical Society Transactions
[Portland Press]
日期:2013-11-20
卷期号:41 (6): 1468-1474
被引量:23
摘要
CRISPR (clustered regularly interspaced short palindromic repeats) arrays and Cas (CRISPR-associated) proteins confer acquired resistance against mobile genetic elements in a wide range of bacteria and archaea. The phytopathogen Pectobacterium atrosepticum SCRI1043 encodes a single subtype I-F CRISPR system, which is composed of three CRISPR arrays and the cas operon encoding Cas1, Cas3 (a Cas2–Cas3 fusion), Csy1, Csy2, Csy3 and Cas6f (Csy4). The CRISPR arrays are transcribed into pre-crRNA (CRISPR RNA) and then processed by Cas6f to generate crRNAs. Furthermore, the formation of Cas protein complexes has been implicated in both the interference and acquisition stages of defence. In the present paper, we discuss the development of tightly controlled ‘programmable’ CRISPR arrays as tools to investigate CRISPR–Cas function and the effects of chromosomal targeting. Finally, we address how chromosomal targeting by CRISPR–Cas can cause large-scale genome deletions, which can ultimately influence bacterial evolution and pathogenicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI