A Systematic Strategy for Screening and Application of Specific Biomarkers in Hepatotoxicity Using Metabolomics Combined With ROC Curves and SVMs

代谢组学 接收机工作特性 生物标志物 毒性 肝毒性 药理学 医学 内科学 生物标志物发现 生物信息学 生物 蛋白质组学 生物化学 基因
作者
Yubo Li,Lei Wang,Ju Liang,Haoyue Deng,Zhenzhu Zhang,Zhiguo Hou,Jiabin Xie,Yuming Wang,Yanjun Zhang
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:150 (2): 390-399 被引量:30
标识
DOI:10.1093/toxsci/kfw001
摘要

Current studies that evaluate toxicity based on metabolomics have primarily focused on the screening of biomarkers while largely neglecting further verification and biomarker applications. For this reason, we used drug-induced hepatotoxicity as an example to establish a systematic strategy for screening specific biomarkers and applied these biomarkers to evaluate whether the drugs have potential hepatotoxicity toxicity. Carbon tetrachloride (5 ml/kg), acetaminophen (1500 mg/kg), and atorvastatin (5 mg/kg) are established as rat hepatotoxicity models. Fifteen common biomarkers were screened by multivariate statistical analysis and integration analysis-based metabolomics data. The receiver operating characteristic curve was used to evaluate the sensitivity and specificity of the biomarkers. We obtained 10 specific biomarker candidates with an area under the curve greater than 0.7. Then, a support vector machine model was established by extracting specific biomarker candidate data from the hepatotoxic drugs and nonhepatotoxic drugs; the accuracy of the model was 94.90% (92.86% sensitivity and 92.59% specificity) and the results demonstrated that those ten biomarkers are specific. 6 drugs were used to predict the hepatotoxicity by the support vector machines model; the prediction results were consistent with the biochemical and histopathological results, demonstrating that the model was reliable. Thus, this support vector machine model can be applied to discriminate the between the hepatic or nonhepatic toxicity of drugs. This approach not only presents a new strategy for screening-specific biomarkers with greater diagnostic significance but also provides a new evaluation pattern for hepatotoxicity, and it will be a highly useful tool in toxicity estimation and disease diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的晓筠完成签到 ,获得积分10
1秒前
科研小白菜完成签到,获得积分10
3秒前
liushuang发布了新的文献求助10
4秒前
科研通AI5应助任性的半凡采纳,获得10
5秒前
十倍沉完成签到,获得积分10
7秒前
赵承松123发布了新的文献求助10
8秒前
9秒前
lyy完成签到 ,获得积分10
10秒前
你好完成签到,获得积分10
11秒前
谷子完成签到 ,获得积分10
11秒前
14秒前
exosome完成签到,获得积分10
17秒前
为为发布了新的文献求助10
17秒前
17秒前
南风知我意完成签到,获得积分10
17秒前
隐形曼青应助专注的火车采纳,获得10
18秒前
tomato发布了新的文献求助10
19秒前
曲奇吐司完成签到,获得积分10
20秒前
rubywang发布了新的文献求助10
21秒前
之_ZH完成签到 ,获得积分10
21秒前
高山我梦完成签到,获得积分10
23秒前
一颗红葡萄完成签到 ,获得积分10
24秒前
就滴滴勾儿完成签到,获得积分10
26秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
27秒前
28秒前
恐龙植树完成签到,获得积分10
30秒前
无花果应助简爱采纳,获得10
33秒前
Yurrrrt完成签到,获得积分10
33秒前
oldjeff发布了新的文献求助10
34秒前
大鱼完成签到 ,获得积分10
39秒前
43秒前
栗荔完成签到 ,获得积分10
43秒前
Ava应助wjw采纳,获得10
48秒前
简爱发布了新的文献求助10
49秒前
为为发布了新的文献求助10
49秒前
文艺的枫叶完成签到 ,获得积分10
54秒前
王琳完成签到,获得积分10
56秒前
简爱完成签到,获得积分10
56秒前
卷大喵完成签到,获得积分10
57秒前
研友_8KX15L完成签到,获得积分10
58秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571428
求助须知:如何正确求助?哪些是违规求助? 3141983
关于积分的说明 9445184
捐赠科研通 2843436
什么是DOI,文献DOI怎么找? 1562857
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524