A Systematic Strategy for Screening and Application of Specific Biomarkers in Hepatotoxicity Using Metabolomics Combined With ROC Curves and SVMs

代谢组学 接收机工作特性 生物标志物 毒性 肝毒性 药理学 医学 内科学 生物标志物发现 生物信息学 生物 蛋白质组学 生物化学 基因
作者
Yubo Li,Lei Wang,Ju Liang,Haoyue Deng,Zhenzhu Zhang,Zhiguo Hou,Jiabin Xie,Yuming Wang,Yanjun Zhang
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:150 (2): 390-399 被引量:30
标识
DOI:10.1093/toxsci/kfw001
摘要

Current studies that evaluate toxicity based on metabolomics have primarily focused on the screening of biomarkers while largely neglecting further verification and biomarker applications. For this reason, we used drug-induced hepatotoxicity as an example to establish a systematic strategy for screening specific biomarkers and applied these biomarkers to evaluate whether the drugs have potential hepatotoxicity toxicity. Carbon tetrachloride (5 ml/kg), acetaminophen (1500 mg/kg), and atorvastatin (5 mg/kg) are established as rat hepatotoxicity models. Fifteen common biomarkers were screened by multivariate statistical analysis and integration analysis-based metabolomics data. The receiver operating characteristic curve was used to evaluate the sensitivity and specificity of the biomarkers. We obtained 10 specific biomarker candidates with an area under the curve greater than 0.7. Then, a support vector machine model was established by extracting specific biomarker candidate data from the hepatotoxic drugs and nonhepatotoxic drugs; the accuracy of the model was 94.90% (92.86% sensitivity and 92.59% specificity) and the results demonstrated that those ten biomarkers are specific. 6 drugs were used to predict the hepatotoxicity by the support vector machines model; the prediction results were consistent with the biochemical and histopathological results, demonstrating that the model was reliable. Thus, this support vector machine model can be applied to discriminate the between the hepatic or nonhepatic toxicity of drugs. This approach not only presents a new strategy for screening-specific biomarkers with greater diagnostic significance but also provides a new evaluation pattern for hepatotoxicity, and it will be a highly useful tool in toxicity estimation and disease diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Matberry完成签到 ,获得积分10
刚刚
hovumath完成签到,获得积分10
刚刚
exosome完成签到,获得积分10
1秒前
ok123完成签到 ,获得积分10
1秒前
重要问旋完成签到,获得积分10
1秒前
1秒前
Wind0240完成签到,获得积分10
1秒前
2秒前
3秒前
笨笨慕山完成签到,获得积分10
3秒前
我要毕业完成签到,获得积分10
4秒前
lucky发布了新的文献求助30
4秒前
zz发布了新的文献求助10
4秒前
Rain发布了新的文献求助10
5秒前
lala完成签到,获得积分10
5秒前
6秒前
染色体发布了新的文献求助30
6秒前
bkagyin应助一介书生采纳,获得10
6秒前
科研通AI6.1应助俊逸惜蕊采纳,获得10
7秒前
叶祥发布了新的文献求助20
7秒前
稚生w发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
星辰漫步发布了新的文献求助10
8秒前
李先生发布了新的文献求助10
8秒前
科研通AI6.1应助zss采纳,获得30
10秒前
过期牛奶坏肚子完成签到,获得积分10
10秒前
宫傲蕾完成签到 ,获得积分10
10秒前
lingjuanwu完成签到,获得积分10
10秒前
10秒前
星辰大海应助小晶豆采纳,获得10
11秒前
秦磊完成签到,获得积分10
12秒前
好运来完成签到 ,获得积分10
12秒前
14秒前
15秒前
姬绪建发布了新的文献求助10
15秒前
果子完成签到 ,获得积分10
15秒前
简单澜发布了新的文献求助10
16秒前
16秒前
叶白山发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766112
求助须知:如何正确求助?哪些是违规求助? 5563948
关于积分的说明 15411404
捐赠科研通 4900416
什么是DOI,文献DOI怎么找? 2636460
邀请新用户注册赠送积分活动 1584661
关于科研通互助平台的介绍 1539932