晶界
热导率
材料科学
钻石
纳米晶材料
凝聚态物理
热传导
粒度
热阻
界面热阻
复合材料
热的
热力学
微观结构
纳米技术
物理
作者
David Spiteri,J. Anaya,Martin Kuball
摘要
Molecular dynamics simulation was used to study the effects of each grain dimension and of grain boundary characteristics on the inter-grain thermal boundary resistance (TBR) and intragrain thermal conductivity of nanocrystalline diamond. The effect of the grain boundaries perpendicular to the heat flow was studied using a multiple slab configuration, which greatly reduced the artifacts associated with the heat source/sink. The TBR between the slabs was found to be more sensitive to the atomic arrangement at the boundary than to the tilt angle between the slabs. When the atomic arrangement at the interface was altered from the minimum energy configuration, the TBR increased by a factor of three, suggesting that a sub-optimal interface quality between the grains could play a large role in reducing the thermal conductivity of nanocrystalline diamond. The thermal conductivity between the boundaries was found to be similar to the bulk value, even when the boundaries were only 25 nm apart. The effect of grain boundaries parallel to the heat flow was found to have a large dependence on the microstructural details. Parallel boundaries which were 2 nm apart reduced the thermal conductivity of defect-free diamond by between one third and a factor of ten.
科研通智能强力驱动
Strongly Powered by AbleSci AI