亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈1完成签到 ,获得积分10
1秒前
duoduoqian完成签到,获得积分10
5秒前
5秒前
在水一方应助FXe采纳,获得10
8秒前
12秒前
爆米花应助小张采纳,获得10
20秒前
29秒前
浮游应助晓奕采纳,获得10
29秒前
33秒前
关小乙发布了新的文献求助10
35秒前
彭于晏应助哈哈采纳,获得10
38秒前
43秒前
47秒前
光合作用完成签到,获得积分10
47秒前
zhaoty发布了新的文献求助10
50秒前
务实书包完成签到,获得积分10
52秒前
在水一方应助史九九采纳,获得10
55秒前
1分钟前
听话的墨镜完成签到 ,获得积分10
1分钟前
星辰大海应助wdasdas采纳,获得10
1分钟前
1分钟前
zhaoty完成签到,获得积分10
1分钟前
等待若山发布了新的文献求助10
1分钟前
1分钟前
丁一完成签到,获得积分10
1分钟前
浮游应助晓奕采纳,获得10
1分钟前
wdasdas发布了新的文献求助10
1分钟前
1分钟前
waomi发布了新的文献求助10
1分钟前
科研通AI6应助倩倩子采纳,获得10
1分钟前
1分钟前
小张发布了新的文献求助10
1分钟前
英俊的铭应助waomi采纳,获得10
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
哈哈发布了新的文献求助10
1分钟前
小二郎应助kkkk采纳,获得10
1分钟前
浮游应助晓奕采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543091
求助须知:如何正确求助?哪些是违规求助? 4629222
关于积分的说明 14610993
捐赠科研通 4570526
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374