Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的白云完成签到 ,获得积分10
1秒前
xt完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
上官若男应助感动背包采纳,获得10
4秒前
7秒前
Re发布了新的文献求助10
7秒前
白笑石发布了新的文献求助10
8秒前
melody发布了新的文献求助10
11秒前
烟花应助FFFFF采纳,获得10
12秒前
星辰大海应助甜甜小蘑菇采纳,获得10
12秒前
14秒前
往返发布了新的文献求助10
14秒前
平常的仙人掌完成签到,获得积分10
15秒前
Re完成签到,获得积分10
16秒前
脆弱大拇哥完成签到,获得积分10
17秒前
17秒前
19秒前
铁观音发布了新的文献求助10
21秒前
陶征应助淡淡的元灵采纳,获得10
22秒前
23秒前
沉默的皮卡丘完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
orixero应助脆弱大拇哥采纳,获得10
25秒前
sdniuidifod发布了新的文献求助10
26秒前
科研通AI2S应助椒盐鲨鱼皮采纳,获得10
29秒前
CAOHOU应助veronicaaaa采纳,获得10
30秒前
31秒前
32秒前
今后应助杜熙凤采纳,获得10
35秒前
FFFFF发布了新的文献求助10
35秒前
搜集达人应助hhh采纳,获得10
38秒前
38秒前
白笑石完成签到,获得积分10
40秒前
迷路博完成签到,获得积分10
41秒前
41秒前
追马发布了新的文献求助10
43秒前
超自然发布了新的文献求助10
46秒前
Rondab应助椒盐鲨鱼皮采纳,获得10
49秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167