亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助npknpk采纳,获得10
3秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
YifanWang应助科研通管家采纳,获得30
6秒前
YifanWang应助科研通管家采纳,获得30
6秒前
Ava应助科研通管家采纳,获得10
6秒前
YifanWang应助科研通管家采纳,获得30
6秒前
YifanWang应助科研通管家采纳,获得30
6秒前
8秒前
田田完成签到 ,获得积分10
8秒前
npknpk完成签到,获得积分20
12秒前
Algernoon完成签到,获得积分10
13秒前
14秒前
16秒前
17秒前
跳跃的愫发布了新的文献求助10
18秒前
sys549发布了新的文献求助10
21秒前
21秒前
科研通AI6.1应助utopia采纳,获得10
22秒前
Magic麦发布了新的文献求助10
23秒前
25秒前
28秒前
bzlish发布了新的文献求助10
30秒前
黑神白了发布了新的文献求助20
35秒前
科目三应助bzlish采纳,获得10
37秒前
bzlish完成签到,获得积分10
44秒前
47秒前
51秒前
utopia发布了新的文献求助10
58秒前
58秒前
852应助Magic麦采纳,获得10
1分钟前
1分钟前
PP发布了新的文献求助10
1分钟前
PP关闭了PP文献求助
1分钟前
1分钟前
1分钟前
lhr发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Jankin完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642