Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
十一完成签到,获得积分20
1秒前
waddles完成签到,获得积分10
3秒前
无花果应助杭杭采纳,获得10
3秒前
5秒前
5秒前
从容的小土豆完成签到,获得积分10
7秒前
无花果应助柚子采纳,获得20
8秒前
regina完成签到,获得积分10
8秒前
8秒前
杨小鸿发布了新的文献求助10
8秒前
10秒前
我是老大应助傻傻的雅寒采纳,获得10
10秒前
森花完成签到,获得积分10
10秒前
子訡发布了新的文献求助10
11秒前
11秒前
CH完成签到,获得积分10
11秒前
李兴完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
kzf丶bryant发布了新的文献求助10
14秒前
vanilla完成签到,获得积分10
15秒前
15秒前
Chenly完成签到,获得积分10
17秒前
桐桐应助柚子采纳,获得10
18秒前
20秒前
21秒前
刘濮源发布了新的文献求助10
26秒前
Hello应助杨小鸿采纳,获得10
26秒前
想发好文章完成签到,获得积分10
27秒前
科研通AI6.1应助柚子采纳,获得10
28秒前
29秒前
31秒前
听闻韬声依旧完成签到 ,获得积分10
34秒前
刘振坤完成签到,获得积分10
35秒前
36秒前
36秒前
凶狠的半山完成签到,获得积分10
37秒前
JRG完成签到,获得积分20
37秒前
瞬间完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978