亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
ding应助科研通管家采纳,获得10
9秒前
寻道图强应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
24秒前
优美香露发布了新的文献求助80
30秒前
35秒前
阿丕啊呸完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
寻道图强应助科研通管家采纳,获得50
2分钟前
Jasper应助诉与山风听采纳,获得10
2分钟前
Tree_QD完成签到 ,获得积分10
2分钟前
CMUSK完成签到,获得积分10
2分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
优美香露发布了新的文献求助10
3分钟前
研友_VZG7GZ应助优美香露采纳,获得30
3分钟前
3分钟前
3分钟前
Carol发布了新的文献求助10
3分钟前
3分钟前
4分钟前
优美香露发布了新的文献求助30
4分钟前
善学以致用应助优美香露采纳,获得30
4分钟前
4分钟前
ajing发布了新的文献求助10
4分钟前
4分钟前
4分钟前
zwang688完成签到,获得积分10
4分钟前
OCDer发布了新的文献求助10
5分钟前
5分钟前
yang发布了新的文献求助10
5分钟前
OCDer完成签到,获得积分0
5分钟前
5分钟前
Zima发布了新的文献求助10
5分钟前
Zima完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814