Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助WEN采纳,获得10
1秒前
华仔应助zdker采纳,获得10
1秒前
水解小博发布了新的文献求助10
1秒前
Iruri发布了新的文献求助10
1秒前
1秒前
liz发布了新的文献求助10
1秒前
2秒前
我是老大应助对对对采纳,获得10
2秒前
魔幻曼雁完成签到,获得积分10
2秒前
科目三应助April采纳,获得10
2秒前
Twonej应助褚蕴采纳,获得20
2秒前
jsdiohfsiodhg完成签到,获得积分10
3秒前
3秒前
名不虚传发布了新的文献求助10
3秒前
libra完成签到 ,获得积分10
4秒前
神勇冷亦发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助Yoki采纳,获得10
5秒前
moheng完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
MaZ发布了新的文献求助10
6秒前
饺子完成签到,获得积分10
6秒前
小早完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
xiaolei001应助含蓄觅山采纳,获得10
8秒前
8秒前
9秒前
大个应助zhuqian采纳,获得10
9秒前
9秒前
moheng发布了新的文献求助10
9秒前
爱吃麻辣烫完成签到,获得积分20
10秒前
Cooper应助冷傲妙梦采纳,获得10
10秒前
李健的小迷弟应助我是AY采纳,获得10
10秒前
科研通AI6.1应助小早采纳,获得10
10秒前
lizhiqian2024发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410