Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁浩伦应助海德堡采纳,获得10
刚刚
lvlvlv完成签到,获得积分10
1秒前
大胆麦片发布了新的文献求助10
1秒前
3秒前
4秒前
5秒前
Gengen发布了新的文献求助10
5秒前
传奇3应助宓天问采纳,获得10
6秒前
小马甲应助阳光的伊采纳,获得10
6秒前
yummybacon完成签到,获得积分10
7秒前
愉快的鸿完成签到,获得积分10
8秒前
8秒前
dddmk发布了新的文献求助10
9秒前
9秒前
10秒前
hkh发布了新的文献求助10
11秒前
charmander完成签到,获得积分10
11秒前
科研小狗完成签到 ,获得积分10
12秒前
胖胖胖胖完成签到,获得积分10
12秒前
13秒前
kobeliu发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
晨曦完成签到,获得积分10
16秒前
liu发布了新的文献求助10
17秒前
17秒前
阳光的伊发布了新的文献求助10
19秒前
rachel完成签到,获得积分20
19秒前
跟我回江南完成签到,获得积分10
19秒前
lucky发布了新的文献求助30
20秒前
20秒前
乖就完成签到,获得积分10
22秒前
科目三应助是小程啊采纳,获得10
23秒前
陶醉幻丝发布了新的文献求助10
23秒前
思源应助阳光的伊采纳,获得10
24秒前
柚子完成签到 ,获得积分10
24秒前
天天快乐应助虾米君采纳,获得10
24秒前
栗子熊发布了新的文献求助10
24秒前
慕雨倾欣完成签到,获得积分10
25秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547211
求助须知:如何正确求助?哪些是违规求助? 3978236
关于积分的说明 12318371
捐赠科研通 3646777
什么是DOI,文献DOI怎么找? 2008339
邀请新用户注册赠送积分活动 1043928
科研通“疑难数据库(出版商)”最低求助积分说明 932532