已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aspiling完成签到,获得积分10
3秒前
4秒前
4秒前
欢呼乘风应助南川石采纳,获得50
6秒前
丘比特应助Villanellel采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
AN应助科研通管家采纳,获得100
7秒前
leemonster发布了新的文献求助10
7秒前
7秒前
科研通AI6应助桀桀桀采纳,获得10
8秒前
巨型肥猫完成签到 ,获得积分10
9秒前
开心凌柏发布了新的文献求助10
14秒前
srics完成签到,获得积分10
15秒前
17秒前
QingCress77完成签到,获得积分10
17秒前
17秒前
22秒前
22秒前
科研通AI6应助留胡子的邑采纳,获得10
22秒前
22秒前
Bloomy发布了新的文献求助10
23秒前
anan完成签到,获得积分10
24秒前
24秒前
ht发布了新的文献求助10
26秒前
26秒前
ZhuJing发布了新的文献求助10
26秒前
Hello应助YYYhl采纳,获得10
26秒前
syyw2021发布了新的文献求助10
27秒前
晓晓鹤发布了新的文献求助30
29秒前
Greyson发布了新的文献求助10
29秒前
30秒前
30秒前
呆呆完成签到 ,获得积分10
30秒前
Greyson发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693