Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁光完成签到,获得积分20
刚刚
刚刚
爱笑飞飞发布了新的文献求助10
刚刚
3秒前
3秒前
3秒前
2389937250应助沐沐采纳,获得200
3秒前
陈伟霆发布了新的文献求助10
4秒前
dingz完成签到,获得积分0
7秒前
丢一池月光完成签到,获得积分10
7秒前
小张发布了新的文献求助10
9秒前
科研通AI2S应助卫卫采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
文静入学发布了新的文献求助10
12秒前
高兴的小虾米完成签到,获得积分10
13秒前
嗯嗯你说完成签到,获得积分10
14秒前
锦七完成签到,获得积分10
16秒前
CXSCXD完成签到,获得积分10
16秒前
优美从雪发布了新的文献求助10
16秒前
ww完成签到,获得积分10
17秒前
英俊的铭应助搞怪的外套采纳,获得10
19秒前
20秒前
远看寒山完成签到,获得积分10
21秒前
追寻平凡完成签到,获得积分20
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
25秒前
nihao完成签到,获得积分20
26秒前
烟花应助wuxunxun2015采纳,获得10
27秒前
卷子卷子发布了新的文献求助10
27秒前
28秒前
阿米完成签到 ,获得积分10
28秒前
干饭宝发布了新的文献求助10
32秒前
猜不猜不发布了新的文献求助10
33秒前
34秒前
34秒前
大模型应助星鱼采纳,获得10
35秒前
35秒前
Rollei应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872