Evolutionary big optimization (BigOpt) of signals

计算机科学 最优化问题 进化计算 大数据 进化算法 多目标优化 降维 元启发式 维数之咒 人工智能 数学优化 机器学习 数据挖掘 算法 数学
作者
Sim Kuan Goh,Kay Chen Tan,Abdullah Al Mamun,Hussein A. Abbass
标识
DOI:10.1109/cec.2015.7257307
摘要

Challenging multi-modal optimization problems have been very successfully solved by evolutionary computation (EC) techniques. To date, many methods have been proposed on evolutionary optimization for both single and multiobjective large scale problems. In the age of Big Data, there is an urge to take evolutionary optimization techniques to the next level for solving problems with even larger scales: thousands and millions of variables. These problems arise in many domains ranging from bioinformatics, to neuroscience and social simulations. In this paper, we investigate the use of EC to solve Big electroencephalography (EEG) data optimization problems with thousands of variables. The optimization problem attempts to identify maximum information that should be kept from a signal while minimizing the artifact. The high level of epistasis inherent in a signal can slow down the evolution. Therefore, we investigate the advantages of optimizing the problem in the frequency domain with different thresholds as opposed to the time domain. We propose synthetic EEG data sets of various scale and noise level. These data sets were the basis for the Optimization of Big Data 2015 Competition (BigOpt), CEC 2015. Two state-of-art multiobjective evolutionary algorithms (MOEAs) were evaluated. The results of this work suggest that frequency representation of the signals facilitates dimensionality reduction for big scale optimization of time series data, and hence provides faster and better quality solutions for EEG data cleaning. Moreover, the results suggest that existing state-of-art multiobjective evolutionary computation methods are extremely slow. Methods that can optimize the problem faster and with high quality are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
少少少完成签到,获得积分10
刚刚
fhhkckk3完成签到,获得积分10
刚刚
康康完成签到 ,获得积分10
2秒前
123456完成签到,获得积分10
3秒前
3秒前
3秒前
猪猪hero发布了新的文献求助10
3秒前
忧伤的烨伟完成签到,获得积分10
4秒前
嘻嘻完成签到,获得积分10
5秒前
六六发布了新的文献求助10
6秒前
博雅雅雅雅雅完成签到,获得积分10
6秒前
慕青应助腊八蒜采纳,获得10
6秒前
shuqi完成签到 ,获得积分10
13秒前
13秒前
13秒前
甜甜友容完成签到,获得积分10
14秒前
斯文败类应助a成采纳,获得10
17秒前
王道远完成签到,获得积分10
17秒前
lina完成签到 ,获得积分10
19秒前
20秒前
cc66发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
虚拟的皮卡丘完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
bow完成签到 ,获得积分10
25秒前
29秒前
优雅的WAN完成签到 ,获得积分10
30秒前
所所应助cc66采纳,获得10
30秒前
LQ完成签到,获得积分10
31秒前
hui完成签到,获得积分10
31秒前
无心的天真完成签到 ,获得积分10
32秒前
君莫笑完成签到,获得积分10
32秒前
热心不凡完成签到,获得积分10
35秒前
乌特拉完成签到 ,获得积分10
35秒前
晚风完成签到,获得积分10
35秒前
元夕完成签到,获得积分10
35秒前
飘逸蘑菇完成签到 ,获得积分10
37秒前
风中的棒棒糖完成签到 ,获得积分10
40秒前
无私的听荷完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099