估计员
算法
量化(信号处理)
补偿(心理学)
前馈
计算复杂性理论
计算机科学
理论(学习稳定性)
控制理论(社会学)
数学
人工智能
工程类
统计
机器学习
心理学
控制(管理)
控制工程
精神分析
作者
N.A. Moseley,Cornelis H. Slump
摘要
This paper presents a low-complexity adaptive feed-
forward I/Q imbalance compensation algorithm. The feed-forward so-
lution has guaranteed stability. Due to its blind nature the algorithm is
easily incorporated into an existing receiver design. The algorithm uses
three estimators to obtain the necessary parameters for the I/Q imbal-
ance compensation structure. The algorithm complexity is low due to
1-bit quantization in the estimators. Simulations show that the compen-
sation algorithm is able to attain an image-rejection ratio (IRR) of up to
65 [dB] under various imbalance conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI